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Executive Summary 

Over the next decade there will be an order of magnitude increase in the number and complexity 

of installed offshore wind turbines in US waters. This growth presents an opportunity for 

technology advancement to reduce the 30% Operations and Maintenance (O&M) contribution to 

the Levelized Cost of Energy (LCOE). This project aims to advance the remote inspection and 

monitoring technologies and strategies for exterior components of offshore wind turbines, in 

turn, to reduce the O&M cost for offshore wind. This program focuses on the design and 

development of an autonomous multi-sensing system, capable of inspecting fleets of turbines 

with minimal to no operational interruption, operating over a wide region while at-sea for long 

duration missions. This will be accomplished by transferring advanced inspection and 

monitoring technologies from onshore to offshore wind while solving the complex challenges of 

collecting high-quality data at varying operation conditions (e.g., sea states) 

This project includes four technology development tasks: 

Task 1 is about the conceptual design of the multi-sensing system. The team has created a 

conceptual design of a proof-of-concept (POC) multi-sensing system for use in conjunction with 

autonomous vessel-based inspection of offshore wind turbines, with the design specifically 

focusing on the strategies for data quality enhancement. A list of system requirements and 

specifications for a conceptual design was first defined based on a complete vision of an 

autonomous vessel-based inspection system. A collection of subcomponents was down selected 

and assembled to build a POC imaging system. And then the POC imaging system was 

integrated with a commercial unmanned surface vessel (USV). The summary of the technology 

development and results for Taks 1 was reported in Section 2 and 3.   

Task 2 is about the lab-based feasibility study on low-latency image acquisition control. The 

team studied the feasibility of the low-latency image acquisition control with advanced analytics 

with the purpose to improve data collection quality. Particularly, a small-scale lab set-up was 

developed so a tracking and positioning camera duo and an AI based turbine detection software 

pipeline were adopted to detect the blade position and calculate the rotating speed. Consequently, 
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the blade of interest was accurately positioned and captured in the center of the imaging camera 

field as high-quality inspection data. The summary of the technology development and results for 

Taks 1 was reported in Section 6.   

Task 3 is about the data quality assessment with autonomous vessel. The team has completed 

two sub-tasks. In Subtask 3.1, the team conducted two rounds of testing with the integrated 

vessel at the Mystic River as a simulating setting and in the Block Island wind farm as the real 

ocean environment. The objective of the testing was to collect data and validate the system 

functions and capabilities in various environmental conditions. During the data collection, the 

team has been working closely with a 3rd party to observe environment impacts and avoid strikes 

in the ocean.  In Subtask 3.2 (assess and enhance data quality), a thorough data assessment on 

images collected in Subtask 3.1 has been conducted to estimate the image resolution, sharpness, 

and quality for defect detection. Our research proved that the designed USV based-, imaging 

system is capable of capturing high quality offshore wind blade images in a real wind farm. The 

summary of the technology development and results for Taks 3 was reported in Section 4 and 5.   

In summary, our research effort in this project has built and proved a design comprising a USV, 

a dual camera combo, and an AI based software pipeline can conduct offshore wind blade 

inspection when turbines are operating although the POC studies for the USV based- imaging 

system and the low latency blade tracking system were conducted separately. In the potential 

future phases of the project, the team will integrate the two above-mentioned systems to one, 

demonstrate its functionalities at a full scale and in a ruggedized configuration, and ultimately 

advance the USV based- autonomous inspection technology for offshore wind to commercially 

ready.    
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1 Project Introduction and Objective 

1.1 Project Background 

Global offshore wind capacity reached to 27 GW in 2019 [1] with projection to 215 GW or more 

by 2030 [2]. While in the U.S., the Biden Administration announced a target to install 30 GW of 

capacity by 2030 [3]. With the Operation & Maintenance (O&M) contributes approximately 30% 

of LCOE [4], the yearly cost of O&M globally will increase from $5B to more than $25B [5]. The 

current available inspection and monitoring strategies for offshore wind are either cost prohibitive 

or limited by varying offshore operational conditions such as weather and sea states. These existing 

inspection technologies typically require technicians onsite, and the wind turbines often needs to 

stop operations for human operators to conduct the inspections. These increase the labor hours 

spent at sea, increase the safety risk, and decrease turbine availability due to downtime.  

On the other hand, advanced O&M sensing strategies and analytics have been developed and field-

validated in the onshore environment for wind turbines monitoring and inspection. However, there 

are significant challenges in applying these mature onshore technologies to offshore wind turbines. 

It is often challenging to directly apply the sensors that collect data of exterior turbine components 

of onshore to those of offshore wind, due to the varying sea conditions. For those inspection 

technologies that have been applied to the offshore world, there is a challenge of acquiring and 

analyzing high-quality data at sea in a technically and economically scalable way. For example, 

aerial drone-based technologies are available commercially for offshore turbine inspections. Due 

to limitations in drone payload and endurance, they are however cost prohibitive for long-term 

monitoring and inspections of large number of offshore turbines. Autonomous drone inspection 

has been demonstrated in the past. However, majority of the current drone inspection offerings 

need operators nearby due to regulatory constrain, and require turbine to halt operation, which 

leads to reduced turbine availability. Hence, there is an opportunity to develop a multi-sensing 

system to conduct robust inspection at varying sea conditions. Such system can enable adaptation 

of proven technologies from onshore wind to offshore, advance offshore O&M strategy, reduce 

LCOE, and accelerate the U.S.’s ability to economically deploy offshore wind technology. 
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1.2 Related Work 

The offshore wind power industry is an emerging and exponentially growing sector as it is 

expected to be one of the main sources of energy in a near future [6] [7]. The increase in the 

development of this type of facilities calls for a cyclic inspection routine to ensure their safety and 

efficiency. Under the current technological base, inspection tasks are labor-extensive, dangerous, 

and highly influenced by environmental conditions, and are mostly carried out by using Remotely 

Operated Vehicles (ROVs) and divers [8]. 

1.2.1 Inspection using aerial vehicles 

Unmanned aerial vehicles (UAVs) have been widely used to inspect wind turbines at a regular 

basis, improving its maintenance. The number of aerial inspections performed by UAVs have 

grown significantly over the past few years due to the improvements in inspection quality in 

comparison to the use of conventional operator-based inspections [9, 10]. The quality of an 

inspection depends on multiple factors, such as quality of image, its resolution, lighting conditions, 

and information about damage severity, among others. The output of a successful wind turbine 

inspection is a collection of images that include detailed description of the damage including its 

approximate location and size, extent, and the cause of damage, e.g., rain or sea water erosion, bird 

strike, lightning strike, etc. 

There is extensive literature on drone-based inspections [11, 12, 13, 14]. The quality of photos and 

videos taken by using such airborne vehicles is strongly influenced by vehicle motion induced by 

environmental conditions, which in turn, affects the quality of the data and hence, the degree to 

which damages can be identified. The cost of carrying an onboard camera affects the battery 

performance significantly, which limits the drone’s flight-time. Hence, drone-based inspections 

are not extendable to large-scale power projects. 

In most existing work, we observed that photographs taken by drones operated manually often 

have low resolution due to the onboard battery limitations. Moreover, the drones are operated from 

a considerable distance from the turbine to maintain safety for the drone. This leads to the turbine 

blades appearing very tiny in the images and damages become difficult to detect. In [15], Løhndorf 

et al. developed a pinhole camera model to estimate the image pixel size and estimate the sizes of 
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objects through pixel counting. Using their method, photographs taken by an UAV were used to 

estimate the size of several features with relatively high precision, while maintaining a safe 

distance from the wind turbine.  However, the resolution of the LiDAR used in this work prevents 

the model from measuring important parts of a wind turbine structure, such as wing tips and trailing 

edges. 

In [16], Durdevic et al. proposed a control system for an autonomous drone for inspection of wind-

farm turbines. Their prototype model employed a distributed architecture consisting of a Ground 

Control Station (GCS) that performs the heavy computations using a high-performance GPU 

required for training and inference of a Deep Neural Network (DNN). A client onboard the drone 

would send images from the camera and receive a probabilistic estimate of the existence of a wind 

turbine in the images. However, this approach has a bottleneck in reducing the level of autonomy 

of the drone and requires a high-bandwidth wireless connection to send the images from the client 

(drone) and to receive commands from the GCS. 

1.2.2 Inspection using marine robotics 

Unlike aerial or ground robots, where the environment is usually bounded by the ground plane, in 

marine robotics the same scenario presents two different domains depending on the operability in 

regions divided by the water surface. The different constraints on the sensor availability and 

mapping techniques for autonomous marine vehicles, both below and above the water surface, 

demand distinct approaches to marine robotics. These constraints define the different domains of 

marine robotics, namely immersed using ROVs and Autonomous Underwater Vehicles (AUVs), 

and emersed using Autonomous Surface Vehicles (ASVs). Attempts have been made to merge the 

visual data accumulated from these two platforms [17, 18] showing promising results. 

In [19], Pinto et al. developed a maritime testing platform called ATLANTIS that allows the 

demonstration of key enabling robotic technologies for inspection and maintenance of offshore 

wind turbines. The test platform consists of two separate testbeds: 1) a Coastal Testbed equipped 

with a monopile and a floating structure system, as well as an onshore control room, from which 

all tests are monitored; and 2) an Offshore Testbed consisting of dedicated positions within a 

commercial wind farm that is reserved for demonstrating robotic technologies in a real 
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environment. Platforms like ATLANTIS have promoted the development and testing of more 

marine robotic technologies such as the one described by Campos et al. in [20]. 

1.2.3 Interior inspection of wind turbines 

Structural components of a wind turbine may be produced with manufacturing defects [21], but 

also suffer from constant damage due to environmental changes while in operation [22], especially 

the blades that are commonly affected by bird or insect strikes [23], lightning strikes [24], 

accumulation of ice and dirt, corrosion due to saltwater [25], or erosion due to rain or small dirt 

particles in the wind [26]. Manned interior inspections can be carried out by trained technicians 

who use specialized tools to move around and inside the turbines to perform tests using inspection 

tools such as ultrasound, radiography, or thermography [27]. For interior inspections, crawler 

robots have also been used [28]. 

1.3 System Requirements & Key Design Parameters 

Inspection is an increasingly critical process in the O&M of an offshore wind turbine. The quality 

and fidelity of the data acquired during inspections has profound downstream consequences on 

decisions such as how to operate and when to repair the wind turbine. The acquisition of high-

quality data has become a focal point of wind turbine O&M and forms the thrust of this work.    

Data acquisition typically falls into two categories: 1) contact-based or local inspection, and 2) 

standoff inspection.  Local inspection requires that the data acquisition system be carried up the 

tower and placed (usually by a human inspector) in close proximity or in contact with the 

component being inspected.  Ultrasound, acoustic tap test, and internal visual inspection fall into 

this category.  The nature of these inspections requires a human to travel to and climb the tower, 

and sometimes entering the confined space of the hub and blades.  The expense of this activity 

puts a limit on the frequency and quality of the data being acquired.   

Standoff inspection is the second category of inspection and is usually done at a distance, e.g., 

either from an aerial vehicle or from the ground. The requirement for a human to arrive onsite and 

to climb the tower are substantially lower and may be removed altogether via automation such as 

autonomous aerial drones. This type of autonomous data acquisition has been under heavy 

development for more than a decade and many times is the primary mode of inspection before a 
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more thorough human-based inspection is required.  The cost of this type of automated data 

acquisition for land-based turbines can be an order of magnitude cheaper than the contact or local 

equivalent inspection and has become the dominant form of inspection for onshore wind turbines.   

When building a standoff sensor data acquisition system for offshore wind turbine, the choice of 

a sensor modality depends to a great extent on what indication (evidence of a defect) is required 

for defect identification and characterization. For this program, each sensor modality requires an 

understanding of the impact of several system requirements and key design parameters, including 

resolution, targeting accuracy, coverage, and environmental requirements. We discuss each of 

these for both visible light and infrared thermography below. Visible light cameras for example 

are used extensively to provide indications of damaged bearings (liberated grease), damaged blade 

exterior such as cracks, erosion, and scorching due to lightning damage. Infrared thermography 

can be used to detect substructural heating and cooling to indicate excessive bending or structural 

damage such as internal cracks and delamination. 

• Resolution: typical resolution requirements are expressed as pixel density on target or 

smallest resolvable feature.  Both are important but for this work we will focus on pixel 

density.  Our working specification is 1 Pixel/mm, which is comparable with the equivalent 

drone visual inspection for onshore turbines. Similarly, for infrared thermography the pixel 

density is roughly 2 pixels/mm2.   

• Targeting Accuracy and Coverage.  These two specifications work in tandem to allow 

for the complete and accurate acquisition of the entire targeted area.  Again, we turn to the 

drone-based inspection requirements to derive our preliminary system requirement. The 

data acquisition system must be able to point the camera with enough precision and 

stability to reliably acquire the entire blade surface over the course of the inspection.  Doing 

this offshore without the possibility for remote control requires that we develop a targeting 

system tolerant to the communication lag associated with offshore vessels.  Lack of cellular 

coverage and the cost of direct satellite communication requires the need of an intelligent 

targeting system capable of data acquisition without direct human control over long 

missions for many turbines.  
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• Environmental Requirements provide the greatest challenge for the offshore automated 

data acquisition system. Varying sea conditions demands the use of a stabilization system 

such that the camera can be reliably pointed to the target interest while rejecting vibration, 

roll, and pitch of the vessel. This system must work with the targeting system to ensure 

high quality data is acquired. Additionally, the nature of the offshore environment will 

require the ability to deal with sensor fowling by the marine environment as well.   

1.4 Project Objective  

This project aims to advance the remote inspection and monitoring technologies and strategies for 

exterior components of offshore wind turbines. This will be accomplished by transferring 

advanced inspection and monitoring technologies from onshore to offshore wind while solving the 

complex challenges of collecting high-quality data at varying operation conditions (e.g., sea 

states). The project has been focused on designing, developing, prototyping, and testing an 

unmanned surface vessel (USV) based- imaging system. The objective is to prove this system 

could meet the system requirements mentioned in Section 1.3 and generate high quality images 

serving as a novel solution for the offshore wind inspection.  
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2 System Conceptual Design 

In order to capture images of the wind turbine blades and components with the required resolution 

specified in Section 1.3, the image capturing system must be able to operate semi-autonomously 

on the surface vessel, with only periodic communication with the control center via the high-

latency link. Figure 1 shows the overall system architecture of the proposed imaging system. It 

consists of camera/s stabilized by a gimbal to capture images at the front-end. The back-end 

components consist of local storage and software modules that performs image processing and 

recognition, as well as turbine and blade tracking algorithms. A long-range or satellite wireless 

module will also be included for receiving parameters of targeted wind turbine models, and for 

uploading captured images when necessary. In what follows, we present three different potential 

options to achieve the purpose.  

 

Figure 1. Overall System architecture. 

 

 
Option 1 (Figure 2) employs two cameras, namely the Positioning Camera (PC) and the Tracking 

Camera (TC), both stabilized by a gimbal platform. The PC is equipped with a wide-angle lens 

and is responsible for ensuring the whole wind turbine is always in the camera’s field of view 

(FOV) during image capture operation. This allows the image segmentation module to estimate 

the rotational speed of the blades across multiple frames. Fusing that with the wind turbine’s 
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parameters, future positions of the individual blades within the FOV of the camera can be 

predicted. 

Figure 2. Option 1 of two cameras with spiral motion tracking path. 

 

 

The TC is equipped with a telephoto-lens that can zoom and capture close-up, high-resolution 

images of different sections of a blade. With a fixed, static physical configuration between the PC 

and TC, the predicted positions of the blades within the PC’s local frame can be transformed onto 

the TC’s local frame. 

 

The blade rotational information allows the TC to perform visual servoing to track each individual 

blades and take high-resolution images from the root to the tip of the blade in a spiral motion.   

 

Similar to Option 1, Option 2 (Figure 3) consist of both the PC and TC for turbine blade image 

capturing. The PC is equipped with wide-angle lens and functions as spotting camera to ensure the 

entire wind turbine in its FOV. Instead of tracking the rotational motion of the blades in a spiral 

fashion, the TC capture blade sections in a straight path, from the tip to the root of the blade. Since 

the wind turbine continues to operate, the target blade section will only be within the FOV of the 

TC once per turbine revolution. In order for the TC to capture images of the blade while it is 
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rotating, precise timing of the blade rotation is critical. This information can be estimated by the 

fusion of the rotational speed estimation of the PC and the wind turbine parameters provided by 

the operator.  

Figure 3. Option 2 of two cameras with fixed tracking path. 

 

Option 3(Figure 4) relies only on a single high-resolution camera, while eliminates the need for the 

spotting camera for the estimation of the wind turbine rotational speed. The idea is to ensure that 

the entire wind turbine is within the FOV of the high-resolution camera while images are being 

captured. During post-processing, zoomed-in sections of the blades will be cropped out from the 

captured images for defect recognition and inspection. This approach only requires the gimbal to 

stabilize a single camera as it locks its focus on the wind turbine.  

 

 

 

 

 

 



 
18 

 
 

Figure 4. Option 3 of a single, high-resolution camera. 

 

 

Different approaches presented have their respective advantages and disadvantages. Option 1 and 

2 require two camera systems and precise inter-camera coordination to perform both wind turbine 

spotting and tracking. However, this approach allows the tracking camera to zoom in onto the 

blade section of interest and capture high resolution images while the wind turbine is operating.  

Option 1 allows the blade section of interest to be always in the FOV of the tracking camera, thus, 

increases the chance of capturing sharp images with minimum motion blur since the tracking 

camera is panning in a spiral motion, in-sync with the rotational speed of the turbine blades. 

However, this also requires continuous actuation of the pan-tilt unit during the operation, thus 

increases the hardware wear and tear, or failure.  

On the other hand, Option 2 depends heavily on good estimation of the rotational speed of the 

wind turbine and the ability to trigger the tracking camera’s shutter at precise timing when the 

blade section of interest moves within the FOV of the camera. In order to avoid motion blur, high 

shutter speed setting would be required. This could potentially limit the operation envelope of the 

proposed system due to the requirement for brighter condition to compensate the high shutter speed 

setting of the camera.  

Option 3 has the advantage of system and operational complexity, since only a single camera is 

used for capturing images of wind turbine blades, and there is no spotting or tracking required. 

Once the camera has its focus locked on the wind turbine, images of the entire blade can be 

captured continuously. In order to capture good quality, still images of the rotating blades, the 
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camera high shutter speed and high aperture setting to maximize image sharpness and minimize 

motion blur especially at the tip of the blade where the relative velocity is the highest. Furthermore, 

the camera must have a high-resolution, low-noise sensor, such that the cropped-out sections of 

the blade section of interest has enough pixel density for effective defect detection. 

To prove the conceptual design(s) can provide high quality images sufficient for offshore wind 

blade inspection, the team has completed the proof-of-concept prototype development and test for 

two separate systems. One system was the USV based cameral system capable of capturing high 

quality images in the ocean environment as described in Section 3, 4 and 5. Another one was a lab 

based- blade tracking system (Section 6) capable of monitoring the blade position in real time and 

controlling the inspection camera’s FOV to cover the object of interest (wind blade).    
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3 System Integration and Prototyping 

This section will summarize the proof-of-concept-, USV based- cameral system capable of 

capturing high quality images in the ocean environment. We will describe the system configuration 

first, the component selection for such a system as next, and then the overall system integration. 

The function and performance testing in the lab environment will be reported in Section 3.2.   

3.1 POC System Configuration  

The focus of the section was to define the proof-of-concept system configuration including an 

autonomous vessel carrying inspection subsystems, imaging systems for inspection data 

acquisition, and a crew vessel to safeguard the autonomous vessels in case of unexpected 

malfunction during the test, as well as serving the purpose of strike avoidance of endangered 

species. The team has defined a schematic and integrated system shown in Figure 5 below.  

Figure 5: Schematic and integrated system for field data acquisition and system testing. 
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The system is comprised on a plethora of subsystems including a crew transport vessel and an 

USV by XOCEAN, our vessel vendor, to perform the remote inspection task. The core component 

of the USV system is a three-axis FREEFLY MōVI gimbal. The gimbal and subsystems will be 

powered via a 24v DC power tap provided by the XOCEAN USV. The gimbal will house the two 

cameras (data acquisition camera and a positioning camera), dual Hollyland HD video 

transmitters, Futaba remote controller receiver, Vello wireless data transmitter, and a camera 

shutter intervalometer.  

3.1.1 Criteria for Camera System Down Selection 

Finding a capable imaging system for the watercraft was critical to the project success. The team 

has defined a set of selection criteria for the camera system listed below: 

• Scaled and weighted such that it can be mounted on a small, unmanned sea vessel 

• Of sufficient resolution to detect defects at 50~100-meter distance 

• x/y positioning capability to dampen waves at a normal sea state, and targeting rotating 

wind turbine blades 

• Capable of being protected from environmental conditions, such as salt, water, wind, sun, 

etc. 

• Having a control system commensurate with the positioning system (refer to technical 

report Deliverable 1.1) 

• Cost effective with reasonable lead time (e.g., 2 months) 

Evaluation of optional systems was focused on three main areas: current offshore imaging systems, 

security-based camera systems, and videographer/film-based systems.  

Through some evaluations and comparisons of commercially available solutions across industries, 

we have concluded that it is less likely to find a readily available commercial-off-the-shelf (COTS) 

solution that meets all the program’s technical and budgetary criteria, and a custom solution 

developed and integrated with COTS components will be most likely required as a commercial 

product or service offering. To test the feasibility of the proposed system, we will procure COTS 

components to build out a proof-of-concept system that would allow us to test in the field with 
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appropriate level of development effort to make it environmentally rated and automated from a 

control perspective.  

3.1.2 Camera Selection 

The imaging system we selected is twofold. For the long-range data acquisition, we will use a 

Sony a7R V 61MP camera with a 400mm lens shown in Figure 6. For positioning, a much wider 

field of view camera is selected. 

Special consideration is made in the mounting of the large camera and lens combination as the 

weight and scale of the lens is unusual for normal gimbal operations. Mounting the camera such 

that proper gimbal balance is maintained will require extended mounting plates, lens supports, a 

camera cage, as well as weights on the back side of the camera. 

Figure 6: Long-range data acquisition camera (Sony a7R 61MP and 400mm lens). 

   

For the positioning camera, we will use a lightweight 1080P 60fps AIDA camera shown in Figure 

7.This will allow us to maximize the capability of, and lessen the strain on, the gimbal due to its 

small form factor (1.5”x1.5”x2”). This camera will be used for a live feed only, and no data will 

be recorded wth it. 
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Figure 7: Wide-angle positioning camera (AIDA 1080P). 

 

3.1.3 Image Stabilization Subsystem 

After evaluating many different pan/tilt and gimbal options, we have selected the FREEFLY 

MōVI gimbal for its cost, overall scale, payload capability (12lbs), remote power modification 

ability (gimbals normally use batteries) and flexibility with respect to camera and lens mounting 

options. The gimbal will work to effectively reject the motion of the waves in all directions 

(except Z/vertical, which will have little effect on positioning accuracy) to reduce operator effort 

on aiming accuracy. 

Since we are on a moving platform and the 400mm lens we choose for the POC system is quite 

long with a mere 6° FOV, it will be difficult to always stay on target. Once the user loses their 

positioning on the blade, typically only sky will appear with no distant and distinct reference 

points. Therefore, it is necessary to have a frame of reference for where we need to aim (e.g., 

left, right, above, below) with respect to the blade section of interest. We choose to use a 

positioning camera with a much wider FOV than the data acquisition camera, such that the 

operator may glance at the position camera remote screen and decide on a direction to adjust the 

gimbal in the case of target loss from the data acquisition camera. For the operator, dual monitors 

will be placed side by side, and embedded aiming crosshairs will facilitate targeting. When 

mounting the two cameras on the gimbal, we will align them vertically, and aim them at a point 

centrally, about 100m away. 

To control the gimbal, a dual stick Futaba controller will be used to allow the operator to adjust 

the pan, tilt and roll capabilities of the gimbal. We may be able to integrate the shutter via the 

controller as well and avoid the use of an intervalometer, but this is to test and develop as needed 
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in the next step. The controller also allows us to remotely fine tune the speeds and mapping of 

each individual axis on the gimbal. 

3.1.4 Communication Among Subsystems 

Each camera has an independent Hollyland video transmitter (Figure 8) feeding dual HD 

receivers and monitors on the Transport vessel. The Hollyland Mars Tx/Rx systems were chosen 

for their robust capabilities at a low cost. They have a 450’ range, automatic 5.8GHz channel 

hopping, very low latency of .06ms, a wide DC input range of 6-16v DC, ability to cross-convert 

SDI to HDMI and small form factor.  

Figure 8: Wireless video transmitter. 

 

 

There is an additional Vello transmitter (Figure 9) that we will attempt to tether to a laptop on the 

Transport vessel via its ad hoc WiFi network and Capture One software. With this stretch 

engineering task, we hope to acquire data in near real time, and stream them potentially via a 

Starlink uplink remotely, instead of waiting to retrieve the data when back at the docks several 

hours later via the SD card. 
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Figure 9: Wireless data transmitter (optional). 

 

3.2 System Prototyping and Lab Test 

Figure 10 is the bare gimbal system that will be mounted on the vessel using a quick release fitting, 

and custom mount on the XOCEAN vessel using standard 80/20 materials (1”x3” extruded 

aluminum base).  

Figure 10: MōVI stock gimbal system and custom 80/20 mount 

 

 
 

 
 

 

The integrated imaging system including two cameras and gimbal controller is presented in Figure 

11. 
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Figure 11: Integrated imaging system 

 

The dual wireless video transmitters shown in Figure 12 provide 1080p video signals back to the 

crew vessel. Live video will be displayed on the two screens. Our researchers on the crew vessel 

will monitor the videos in real time to ensure the blade being inspected is within the field of view, 

and that the image quality is acceptable. All other subsystem components were described in 

Deliverable 1.3. 

Figure 12: Live video transmission and display 

                  

The system was assembled, and several technical issues were observed and mitigated during the 

buildup.  

Gimbal performance and sensitivity 
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We are currently at 22 lbs of equipment, including the mounting base (3.25 lbs) and gimbal (5.84 

lbs) which is rated for 15 lbs loads. Our added equipment weighs 12.91 lbs. When considering the 

added weight of the coiled power cable and its drag, we are very near the mechanical limits of the 

gimbal. Great efforts were made to position the heavy camera/lens combo such that minimal 

balancing weights were necessary to keep the overall system weight as low as possible. During 

testing, we observed gimbal motor interruption and overheating and concluded that balancing of 

the gimbal is more critical than on other gimbals, but observed to be working well once the system 

was balanced (showed in Figure 13) and tuned.  

Figure 13: Spherical counterbalance weights required to balance offset lens weight 

 

Cable management 

As we are intending to power the gimbal from the XOCEAN vessel, we need to make a physical 

power connection to the rotating gimbal battery mounts. We could have used a large slip ring for 

power, but this would have added additional development time and significant costs. Based on a 

rated 24 VDC and 13 A max load, we chose a 16ga coiled cable at 2’ compressed length (about 2x 

length extended). Although the cable is quite bulky and will require careful cable management to 

avoid being tangled (See Figure 14), it is the simplest option. We repurposed a stock MōVI battery 

adapter, plugged it into one of the two available battery mounts, disassembled and wired the power 
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cable into it and ran it to a power supply to observe max current draw under load. At idle, the 

gimbal and sub systems draw just 1.048 amps, however when an individual gimbal motor is 

loaded, we saw a fast rise of ~2.6 A. The gimbal motors have a protection mode when ~3 A is 

exceeded, as with the condition where the power cable is limiting movement. When considering 

that all three gimbal motors can fire simultaneously under heavy roll/pitch/yaw corrections, we 

can see why the gimbal can draw up to 13 amps, which also accounts for loads encountered by the 

communication and onboard charging systems for the camera batteries. 

Figure 14: Power connection, video transmitters, battery and DC source power indicators 

  

We also observed under a stress test that under the highest loads, it was possible to draw enough 

current quickly enough that the power supply could not keep up. As we cannot guarantee that the 

XOCEAN vessel can provide sufficient loads at this point in the project, we opted to retain one 

battery onboard the gimbal to smooth out any heavy draws the gimbal may have. Under normal 

operating conditions, the gimbal will draw from the supplied cable, but the battery provides a nice 

redundant backup power source (1-1.5 hours of run time). The gimbal is designed to dynamically 

flip from source to source without interruption to operation. 



 
29 

 
 

Wireless channel interaction and separation 

Once the power was stable, we started to evaluate wireless performance. The transmitters are rated 

for 450 feet, but in testing, we observed just about 75 feet before starting to see signal dropout. 

We were aware that the proximity of the two transmitters on the gimbal and crew vessel were not 

ideal, but we do not have flexibility on the gimbal side to separate the two. But we did separate 

the crew vessel receivers by 8 feet and saw ~50’ improvement in solid transmission quality. 

Additionally, a wireless scan was performed, and it was observed that by choosing channel 1 on 

one TX and channel 8 on the other, another 50-100’ of range was observed – more than sufficient 

for the test. Additionally, in the lab environment, multiple 2.4GHz Wi-Fi and other networks may 

be impacting signal strength/quality, and these disparate signals are unlikely be present on the 

water. We will verify wireless performance later during the actual XOCEAN integration and 

testing phase. 

Control 

We opted to use a surface-rated Futaba stick controller. We were able to use a specialized control 

cable to connect the Futaba receiver to the gimbal to provide PTZ control. After some 

configuration, we were able to logically control the gimbal via the remote viewing screens. (Up 

on the stick pans the image up, left moves left, etc.). Additionally, we can select any gimbal speed 

via a rotating knob, or quickly flip between high and low speeds which is useful to get onto target 

quickly via the positioning camera, and then slow down the speeds to precisely position the 

inspection camera on an area of interest. 

We had hoped to additionally use a switch on the Futaba showed in Figure 15 to trigger the 

inspection camera, but this is not possible within the MōVI gimbal as hoped, and although custom 

options exist for RC PWM to Sony shutter control via USB, we just opted to use a standard wireless 

intervalometer and during testing, which worked admirably. It allows us to pre-focus the camera 

via a half press of the shutter button before firing. The separation of the controller and shutter also 

allows multiple operators to split inspection duties. 
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We also will be evaluating the integration and performance of the Vello wireless transmitter which 

will symbiotically allow us to stream image content remotely from XOCEAN to the crew vessel, 

but with the trigger being initiated from an iPad touchscreen interface over Wi-Fi, we have 

concerns over latency and general HMI usability. We need to be able to accurately fire the camera 

if, for example, the turbine is pin wheeling, or the gimbal is not sufficiently dampening wave 

movement. 

Figure 15: Futaba T4GRS radio and intervalometer 

 

Remote viewing 

A standard directors monitor cage was repurposed as a crew vessel viewing station. One receiver 

shown in Figure 16 is mounted to the rear of the cage, and a second receiver in Figure 16 is mounted 

8’ away (an adjustable clamp will be provided to mount to a solid feature on the vessel).  

We will use a red grid on the wide-angle positioning camera (left) to get a general field of view 

which provides a good way of getting the inspection camera (right) on target. Without the 

positioning camera, the inspection camera operator would have no situational awareness of where 

they are aiming. 
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Figure 16: Director’s view 
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4 Field Testing  

This section summarizes the two rounds of the field testing for the integrated system containing 

the USV and the imaging system prototyped in Section 3.2.  XOCEAN’s USV was shipped to 

GE’s Niskayuna site in August of 2023. The team worked together to integrate the imaging 

system shown in Figure 11 with the USV. An integrated system is shown in Figure 17. As stated 

in the original proposal, this project aims to design and prove that a USV based- imaging system 

is capable of taking high quality images as a means of offshore wind blade inspection when 

turbines are operating. A blade tracking technology to enable inspection during operation has 

been developed and demonstrated in the lab scale and reported in the deliverable D2.1 and D2.2. 

Details about this technology will be described in Section 6 of this report as well.  

To prove the USV based- imaging system can produce high quality images, a thorough testing 

plan was sketched (Table 1) and the associated risks were carefully evaluated. The preliminary 

test at GE’s lab environment focused on the core system function and the remote controllability 

of all components. The test at the Mystic River aimed to test the overall system function, 

performance, and robustness in a representative water environment. The test in the ocean was to 

prove the feasibility of the USV-based imaging system for offshore wind blade inspection. 

Section 4.1 and Section 4.2 summarize the processes and key takeaways from the Mystic River 

and the Block Island wind farm test respectively.   
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Figure 17: An integrated system   

 

Table 1: Field test plan 
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4.1 Data Collection at the Mystic River  

Mystic River is a 7.0-mile-long (11.3 km) river in Massachusetts. On the riverbank near the 

Massachusetts Water Resources Authority, there is a 1.5 megawatt wind turbine at the DeLauri 

Sewer Pump Station in Charlestown, Massachusetts. The team selected this site for the factory 

acceptance test for the integrated vessel to assess the system operability on the water and the 

imaging capability for wind blades. 

As described in the deliverable D1.4, a plug-and-play fixture was designed to integrate the imaging 

system developed by GE with the USV from XOCEAN. Therefore, the installation time at the 

dock by the Mytic River was about 10 minutes with the USV in the water. The USV sailed to a 

location that was between 50 meters and 100 meters from a wind turbine situated on the riverbank 

(Figure 17). While the USV was in the water, a support vessel was nearby to monitor the USV for 

safety purposes. Two computer screens were set up on the support crew vessel to display images 

from the positioning camera and the inspection camera. Several camera settings were tried to find 

a balance between over or underexposing the image shots because of the changing sun direction, 

the white color of the blade, and the light blue background of the sky. For the inspection, the test 

team tried to get as close as possible to achieve the highest pixel resolution, while still giving a 

reasonable amount of white space in the images to be able to compensate for boat and blade 

movement. To get the best defect detail, the imaging system was pointed perpendicular to the blade 

surface as much as possible. Most of the pictures were taken when the blade was in the 6 o’clock 

or down position to reduce the shooting angle. 

Our test team observed high quality pictures when objects were stationary or slow moving. Two 

exemplary pictures taken with the USV based imaging system are shown in Figure 18. Quantitative 

image assessment has been conducted in M4.2 to conclude whether the image quality is sufficient 

for defect recognition and meet the requirements. 

From the river test, one area the team identified to improve was the video transmission 

interference. With both the positioning camera and the inspection camera next to each other on the 

imaging system, separating the two receivers with more distance or using another HDMI TX/RX 

system on a different band than 2.4Ghz could potentially reduce the interference. 
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Figure 18: Exemplary picture taken with the USV based imaging system. 

(a)                                                                                              (b) 

 

4.2 Data Collection in the Ocean 

The Block Island Wind Farm is located 3.8 mi from Block Island, Rhode Island in the Atlantic 

Ocean. The five-turbine, 30 MW wind farm is owned by Ørsted US Offshore Wind and maintained 

by GE’s Offshore Wind business unit. The ocean test of this project was conducted on the 2nd of 

September 2023, supported by GE’s Offshore Wind team, and approved by Ørsted. 

XOCEAN’s USV departed from Point Judith, RI at 5am on the testing day. A crew boat 

accompanied the USV to the Block Island wind farm. At 3 knots, it took 4 hours for the USV to 

travel from RI to the Block Island port, New Shoreham. The GE team swiftly integrated the 

imaging system with the USV attributing to the plug-and-play fixture design. The USV and the 

crew boat then traveled to Block Island. Inside the crew boat’s cabin, two HD screens, two HD 

video transmitters, a gimbal controller for aiming the blade and a remote shutter for image 

capturing were situated. Two GE researchers were well-coordinated on targeting the blade of 

interest and capturing the images. Figure 19 shows one of the GE’s researchers controlling the 

shutter for image capturing, with the USV in the background, as well as a wide-angle view of the 

blade on the left screen, and a zoomed in version on the right. 
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Figure 19: Image capturing 

 

 

 

On the day of the testing, two of the five turbines at the wind farm were under maintenance which 

was beneficial for the team to test the imaging system capability without blade rotation. More than 

1,500 pictures of two turbines, including the suction, pressure, leading edge and trailing edges 

surfaces were captured at an approximately 100 meters standoff distance from the blade. During 

the testing, the A.I.S team was on duty for environmental (marine life) observation, and remotely 

monitored for collision avoidance. The wave conditions during the 10-hour testing window are 

shown in  

Figure 20. Although it was a moderate day based upon the wave condition, the recoded heave data 

on the USV still indicated the imaging system has experienced significant motion during the test. 

Figure 20: Wave condition  
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Figure 21: Heave data recorded on USV 

  

Figure 22: Pictures taken before and after camera setting optimization. 

 

Through the test at the Block Island wind farm, the team proved the combined XOCEAN USV 

and GE imaging systems are able to take pictures in a representative offshore wind farm 

environment. The collected pictures mapped two blades fully, and we learned how to significantly 

optimize camera and gimbal settings. For example, the two pictures shown in Figure 22 were taken 

before and after the camera settings were optimized. Quantitative image quality assessment was 

reported in D4.2.    
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4.3 Vessel Strike Observation 

While GE Global Research, in collaboration with XOCEAN, performed testing at the five (5) 

Block Island Wind Farm turbines, A.I.S was hired as the environmental observer during the entire 

transit and test. Figure 23 below illustrates the Wind Lease area and operational area. A team of 

two NMFS-approved Protected Species Observers (PSO) were provided by A.I.S., Inc. for remote 

monitoring operations. All PSOs attended a dedicated Monitoring and Mitigation training course 

prior to the beginning of survey operations. PSO training involved a detailed review of all relevant 

protected species compliance, data collection, and reporting conditions. A remote vessel strike 

avoidance watch was performed via real time video feeds from the visual cameras mounted on the 

USV during all periods of open water vessel transit for vessel strike avoidance mitigation 

implementation and documentation of protected species observations. Offshore operations for the 

XOCEAN-19 were remotely monitored for a total of 12 hours and 31 minutes. Figure 24 (below) 

illustrates this monitoring time. Because all remote monitoring occurred during daylight hours, 

only daylight visual observations was required, and no time was spent monitoring the thermal 

camera feeds. During the one-day test, no detections of marine protected species occurred, thus 

there was no need for implementation of vessel strike avoidance mitigation. 

Figure 23: Map of the testing area. 
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Figure 24: Remote monitoring effort by USV and observation type  

 

4.4 Conclusion of the Field Testing 

In conclusion, the research team summarized the following key points from the ocean test: 

• The overall system is well capable of producing RGB imagery consistent with the AI- 

based automated defect recognition for inspection purposes. 

• A remote or automated control of the camera’s settings is desirable to accommodate 

varying environmental conditions. 

• 100m is about the right standoff to balance safety, the angle of attack and pixels per inch 

resolution for the purpose of inspections.  

• The gimbal is more than capable of dealing with 1m swells and high frequency waves. 

• Although the ocean test proved the USV based imaging system was effective for blade 

inspection in static or pinwheeling modes, integrating the automated blade tracking 

technology developed in Task 2 of this project will be critical to the USV based imaging 

system for fast spinning blades with a tip speed of tens or more than 100 meters per 

second.  

• A purpose-built gimbal solution will need to be developed in next project phase to 

provide the following features. 

a. Environmental protection/lens wiper/cleaning 

b. Remote turn-on 

c. Securing statically for travel 

d. Cooling considerations 

e. Electro-mechanical integration with the USV 
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5 Data Quality Assessment 

In Deliverable 2.1 and D2.2 we presented a pipeline for calibrating a two-camera system in a lab 

environment that can take high-resolution closeup images of a moving object and position the 

moving object back to the field-of-view (FOV) of the inspection camera (a.k.a tracking camera). 

To quantify the image quality and the effectiveness of positioning, the sharpness and the visible 

surface area (contour in pixel space) of the blade were employed as the metrics for quality 

assessment. In this milestone (M3.2), the same metrics were applied to assess the image quality of 

the field tests. The second parameter to calculate is the image resolution. As described in the 

conceptual design stage, a one-pixel-per-millimeter image resolution was desired at about 100-

meter standoff distance. In addition, the ultimate objective of this project is to develop a novel 

method for offshore wind blade inspection. Therefore, the images acquired from the field tests 

were also assessed using GE’s proprietary AI algorithms for defect detection.   

The image sharpness and contour area calculation were summarized in Section 5.1. The image 

resolution estimation was reported in Section 0. The defect detection results using GE’s AI 

algorithm pipeline were reported in Section 5.3.    

5.1 Image Sharpness and Contour Area Calculation 

The sharpness of each image was estimated using a focus score that was part of an autofocus 

method proposed by Herrmann et.al. [29]. To calculate the contour area, the blade was firstly 

detected with the Segment Anything Model (SAM), a new AI model by Meta, that can segment 
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any object from an image [30]. And then the area of the blade was compared against the entire 

FOV. A higher value of sharpness and contour area indicates a better capture of the target blade. 

We have analyzed some of the representative images taken from the leading edge, blade bottom 

facing downwards at different angles, and the pressure side. The best- and worst-case scenarios 

for each view of the blade has been summarized in Table 2: 

Table 2: Best- and Worst-Case Scenarios for Sharpness and Contour Area (Block Island test) 

 Best Case Worst Case Sharpness Contour Area 

Blade View Sharpness Contour 

Area 

Sharpness Contour 

Area 

Mean Std. 

Dev. 

Mean Std. Dev. 

Leading 

Edge 

18.40 56335 79.56 253997 57.37 18.98 150709 63075.06 

Pressure 

Side 

15.50 47839 35.90 211344 23.16 5.23 113643.45 46319.66 

Blade facing 

downwards  

14.07 8481 45.89 172520 27.17 10.05 106326.78 38793.54 

 

As can be seen through this analysis, the visible contour area affects the sharpness of the image. 

The range in the contour area is due to the movement of the camera from the tip (lowest visible  

surface) to the nacelle (thickest part of the blade). Higher values of sharpness and contour areas 

indicate better focus and resolution of the images. 

Same calculation has been conducted for the images captured from the Mystic River, where the 

water motion on the testing day was very moderate so image quality was great as expected. The 

results were shown in Table 3.   

Table 3: Best- and Worst-Case Scenarios for Sharpness and Contour Area (Mystic River test) 

 Best Case Worst Case     

Blade 

View 

Sharpness Contour 

Area 

Sharpness Contour 

Area 

Mean Std. 

Dev. 

Mean Std. 

Dev. 

Leading 

Edge 

4.13 40505 43.73 178876 19.88 11.79 101533.25 37828.17 
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5.2 Image Resolution Estimation 

In the context of defect recognition, defects measurements are paramount to classify defects 

accurately. By determining the real-world size represented by each pixel, we can establish a direct 

relationship between the image and the physical world, ensuring that defects are identified with 

high precision and reliability. In the absence of actual 3D data, measuring a known feature's size 

within an image and dividing it by the total number of pixels can provide an alternative way to 

estimate the pixel resolution. Though pixel resolution is a function of geometry of the object, with 

planar assumption we can estimate rough order of magnitude pixel resolution from our images. 

Pixel resolution is also a function of directionality. Hence, in the absence of actual distance 

measurement between two known features along the length of the blade, we are only able to 

compute pixel resolution along the width of the blade using the length of the features divided by 

the total pixel numbers. Based upon approximation, we assumed the cross section showed in  

Figure 25 is the widest section of the blade, which is 4.2 meters according to GE’s Halide 150 

turbine blade datasheet. 

Figure 25: Illustration of pixel resolution calculation 
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Therefore, in our analysis, we observed 0.06-inch pixel resolution which is extremely good for 

defect disposition and decisioning. Given that the standoff distance of the imaging system in the 

Block Island test was far more than 100 meters, we concluded the pixel resolution of our imaging 

system was in the ballpark of the design requirement.  

5.3 Image Processing for Defect Detection 

GE has developed a proprietary AI-based defect detection algorithm based on U-Net architecture 

[29] trained on data collected from onshore wind turbine. The U-Net architecture (Figure 26) has 

become a cornerstone in the field of computer vision and medical image analysis. This neural 

network architecture is particularly well-suited for tasks involving semantic segmentation, where 

the goal is to assign a class label to each pixel in an input image. U-Net's distinguishing feature is 

its U-shaped structure, which consists of a contracting path to capture context (Encoder) and a 

symmetric expanding path for precise localization (Decoder). The contracting path employs 

convolutional layers with progressively increasing receptive fields, enabling it to extract high-level 

features, while the expanding path uses transposed convolutions for up-sampling and generating 

pixel-wise predictions. Skip connections between corresponding layers in the contracting and 

expanding paths facilitate the transfer of fine-grained spatial information, aiding in accurate 

segmentation. U-Net's versatility and effectiveness have led to its widespread adoption in various 

applications, such as medical image segmentation, image-to-image translation, defect recognition 

and many more. Our AI algorithm is trained for detecting anomalies in the images (defect pixels 

vs background-pixels) and localize them. To identify the defect category associated with each 

anomaly, another neural network can be trained to classify these regions into defect classes.  

We assessed the images collected from the field test and performed inference on the images using 

our AI algorithm. As can be seen in Figure 27, our algorithm was able to detect anomalies and 

localize them. In Figure 27, the red boxes represent anomalous regions for reviewing and 

disposition, the left column is the original images, and the right column is the AI predictions in red 

overlayed on the original images.      

Performance can be further improved by fine-tuning the AI algorithm on the actual data from the 

offshore wind turbines. This demonstrates that the image quality and data distribution of defects 
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in these images are similar to onshore wind and AI methods developed for on shore can be 

leveraged for human-assisted automated disposition. 

Figure 26: U-Net architecture 

 

 

Figure 27: Example of AI-based detections of defects in images collected from the field test.  

  

   

 

 

 

 

 

 

5.4 Conclusion for Data Quality Assessment   

In this section, we have adopted four methods to process the images acquired from the field tests 

that include the image resolution, sharpness, contour area in pixel space, and image quality for 

defect detection. The objective was to prove the inspection images acquired using the USV based- 

Original Image AI-based defect predictions overlayed 
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imaging system have reasonable image quality to meet the inspection requirements for the offshore 

wind O&M. In summary, we have concluded that: 

1) The field image sharpness from the ocean test is equivalent to the river test and lab test.   

This proved that our USV based images system is robust to capture high quality images in 

the ocean environment. 

2) The approximate image pixel resolution meets the design but requires a more rigorous 

evaluation to establish pixel resolution at entire surface of the blade which would involve 

collecting calibrated 3D data with images.  

3) Defect detection method developed for onshore imagery was able to generalize well for 

offshore data demonstrating that the images quality and data distribution is similar to 

onshore data and our AI methods can be leveraged for automated defect recognition and 

disposition. 
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6 Lab-based Feasibility Study on Low-latency Image 

Acquisition Control 

6.1 Research Motivation for a Low-latency Image Acquisition 

The focus of milestone 2.1 was to define a low-latency image acquisition system. The image 

acquisition system must be able to point the camera with enough precision and stability to reliably 

acquire the entire blade surface over the course of the inspection. Doing this offshore without the 

possibility for remote control requires that we develop a targeting system tolerant to the 

communication lag associated with offshore vessels. Lack of cellular coverage and the cost of 

direct satellite communication requires the need of an intelligent targeting system capable of data 

acquisition without direct human control over long missions for many turbines. 

6.2 Design of the Low-latency Image Acquisition System  

In order to capture high resolution images of the wind turbine blades and components, the image 

capturing system must be able to operate semi-autonomously on the surface vessel, with only 

periodic communication with the control center via the high-latency link. Figure 28 shows the 

overall system architecture of the proposed imaging system. It consists of cameras stabilized by a 

pan-tilt unit to capture images at the front-end. The back-end components consist of local storage 

and software modules that performs image processing and recognition, as well as turbine and blade 

tracking algorithms. A long-range or satellite wireless module will also be included for receiving 

parameters of targeted wind turbine models, and for uploading captured images when necessary. 
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Figure 28: Overall System architecture. 

 

6.3 Calibration Pipeline 

A pipeline for calibrating a two-camera system (Figure 29) in a lab environment has been 

successfully created that can take high-resolution closeup images of a moving object with 

reasonable speed and accuracy. The first camera (PC) is a low-resolution, wide-angle camera for 

positioning the platform and spotting. The second camera (TC) is a high-resolution camera with a 

zoom lens, used for tracking the position of root/mid/tip section of a blade, and take burst photos 

of fixed points on the blades or follow a spiral motion path to track each blade. A pan-tilt unit 

(PTU) has been used to keep the tracked blade at the center of the frame of the second camera. An 

augmented reality (AR) tag-based tracking algorithm is used for calibrating the offset between the 

location of the tracked object on the wide-angle camera frame, and the pan and tilt combinations 

of the PTU that keeps the tracked object in frame for the zoom-lens camera. 
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Figure 29: Camera setup for benchtop tests 

 

6.4 Testing the Tracking Algorithm 

In Deliverable 2.1, we presented a pipeline for calibrating a two-camera system in a lab 

environment that can take high-resolution closeup images of a moving object with reasonable 

speed and accuracy. In Deliverable 2.2, we present the actual tracking algorithm, a set of 

benchtop tests, and some metrics using which we evaluated the proficiency of our method. 

6.5 Conclusion of the Lab-based Tracking System 

In the lab-based simulations for feasibility study on calibrating the two-camera system for high 

quality and accurate image acquisition, we have developed and optimized a custom trained 

Convoluted Neural Network (CNN)-based object detection model to detect all three blades and the 

nacelle of the turbine. To simulate the motions from the real environment, we applied the motion 

of a robot arm to simulate the actual wave motion similar to the Atlantic Ocean, and then tested 

the calibration method and stabilization algorithm of the two-camera system. Based upon our 

study, we have proved that the blade location can be predicted and updated in real time so the TC 

can capture high quality images while the blade is rotating.  
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As future effort in the future project, this system will be tested in a real-world scenario by mounting 

it on an autonomous surface vessel and inspecting offshore turbine blades.  
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7 Summary and Next Steps  

In this project, the team successfully integrated an USV based-, dual camera-, imaging system 

capable of capturing high quality images in a range of 50 meters to 150 meters for offshore wind 

turbines. Even with uncertainties from the weather forecast, complicated logistics to arrange 

transportation and crew vessels, and careful coordination among a multiple-institute team, this 

system was tested in both river and ocean environment. Through the test at the Block Island 

wind farm, the team has concluded that the USV based imaging system can be potentiality 

employed to inspect wind turbine blades, at a safe distance, and generate high quality images. 

Regarding quantitative image quality assessment, the team adopted four metrics: image 

sharpness, contour areas, image resolution, and defect detectability using AI algorithm. The first 

three parameters were calculated for representative images acquired from the field tests that 

includes the different sections of wind turbine blades. The image quality is equivalent to the 

quality of other inspection modality such as drone.  

To prove the inspection images acquired using the USV based- imaging system have a 

reasonable image quality for defect detection, the team has ran GE’s proprietary defect detection 

AI algorithm developed for onshore wind O&M. The algorithm was successful in detecting 

defects on the images.  The defect detection method developed for on shore imagery was able to 

generalize well for offshore data demonstrating that the images quality and data distribution from 

our field test is similar to onshore data and AI methods can be leveraged for automated defect 

recognition and disposition. 

To realize real time blade tracking and position imaging camera to a proper FOV, a lab based-, 

small scale prototype was developed, and a tracking AI pipeline was proved to be capable of re-

positioning the imaging camera for better image quality. However, this blade tracking solution 

needs to be proved at a full-scale on a real offshore wind turbine and integrated to the full-scale 

imaging system described in Section 3 .  
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As the future plan, if there is a potential Phase II project opportunity, the team will propose a 

full-scale POC systema and demonstration and advance the technology to TRL7.  
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