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Summary 
This is the final report of Project #133/192900, titled: “AIRU-WRF:  AI-powered Physics-based Tool for 

Offshore Wind Forecasting & Grid Integration.” The project started on 09/2023 and officially ended in 

07/2025. The project was led by Rutgers, The State University of New Jersey (the lead contractor) and 

included Clarkson University and the Electric Power Research Institute (EPRI) as sub-contractors.  

The report comprises seven main sections. Section 1 provides a brief background about the 

objectives and scope of the project. This is followed by Section 2 where the extraction, processing, and 

analysis of offshore wind datasets are described. Sections 3 and 4 discuss the developed models, as well as 

the key findings and results of the project. Section 5 concludes the report and highlights plans for future 

research and development. Section 6 presents the efforts made by the project team to disseminate the results 

of this project. Finally, Section 7 includes the relevant references.  
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1 Background and Problem Statement  
This NOWRDC project aimed to develop and demonstrate a wind forecasting technology, called AIRU-

WRF, to predict, for short-term horizons (sub-hourly to a day-ahead), the offshore wind (OSW) resource 

and power production at key offshore wind energy areas along the U.S. East Coast. AIRU-WRF is a hybrid 

forecasting technology which combines state-of-the-art physics-based modeling with probabilistic machine 

learning (ML) capabilities. The motivation of this project is the lack of customized forecasting products 

that are specifically tailored to the offshore wind energy areas along the U.S. East Coast. Accurate short-

term forecasts will be necessary for the reliable and cost-effective operation of future OSW farms in this 

geographical region, as well for the integration of OSW energy into the power grid.  

Towards that, AIRU-WRF (short for the AI-powered Rutgers University Weather Research & 

Forecasting model) was developed to combine region-specific numerical weather predictions (NWPs) with 

local measurements to make wind speed and power forecasts that are short-term (sub-hourly to a day-

ahead), and of high resolution, both spatially (site- or farm-level) and temporally (sub-hourly). Such high-

resolution forecasts—practically unattainable by stand-alone physics-based models—are key to support the 

reliable and cost-effective operational decision-making in OSW farms and power grids, including resource 

and production estimation, economic dispatch and reserve procurement, and day-to-day OSW farm 

operations. The project is especially motivated by the lack of demonstrated OSW forecasting technologies 

that are tailored to the OSW energy areas along the U.S. East Coast.    

Obtaining high-resolution, short-term wind forecasts is challenging, mainly due to the limitations 

of meso-scale NWPs at fine spatial and temporal scales. Hence, this project aims to unlock the potential of 

ML technologies to complement NWPs in OSW forecasting, with the following two objectives in mind:  

A. To develop an ML-enhanced OSW forecasting technology which combines region-specific 

NWPs with ML tools for superior, high-resolution, short-term OSW resource and power forecasting.  

B. To extensively evaluate the technology on two main fronts: (i) forecast quality (i.e., how 

accurate are the forecasts compared to benchmark models in the wind forecasting landscape); and 

(ii) forecast value (i.e., what is the added economic and reliability value of using these forecasts in 

grid operation and offshore wind integration).  
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2 Data Extraction and Analysis  
High-quality forecasts require access to high-fidelity measurements at multiple spatial sites, for sufficiently 

long periods of time, and at altitudes that are relevant to the hub height of modern-day wind turbines. The 

proposed technology makes use of two sources of data, described in Sections 2.1 and 2.2., respectively.   

2.1 Local Measurements from the U.S. East Coast 

Hub-height wind observations that are publicly available have been extracted from six buoys in the U.S. 

Mid/North Atlantic region. The details and data coverage of these datasets are shown in Table 1. 

Table 1: Publicly available data identified by the project team for AIRU-WRF model development. NYSERDA = 
New York State Energy Research & Development Authority. ASOW = Atlantic Shores Offshore Wind. 

Buoy Start Date End Date Latitude Longitude Resolution Owner 

E05 North 

(E05N) 
08/2019 09/2021 39.97 -72.72 10-min NYSERDA 

E05 South 

(E05) 
01/2022 01/2023 39.48 -73.59 10-min NYSERDA 

E06 09/2019 03/2022 39.55 -73.43 10-min NYSERDA 

ASOW-1 10/2021 09/2023 39.31 -74.11 10-min ASOW 

ASOW-4 05/2021 06/2022 39.20 -74.08 10-min ASOW 

ASOW-6 02/2020 05/2021 39.27 -73.88 10-min ASOW 
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Figure 1: Left: Geographical map of the buoys surveyed, and OSW energy areas considered. Middle: A week-worth 
of hub-height wind speeds at locations E05N and E06. Right: Spatially averaged wind rose plot of hub-height winds. 

 

Figure 1 provides an overview and demonstration of the data used in this work. The left panel 

shows a geographical map of the buoys surveyed (some buoys omitted in the figure due to spatial proximity), 

on top of the OSW energy areas considered. The middle panel shows a week-worth of hub-height wind 

speed measurements at two buoy locations (E05N and E06), suggesting strong spatial dependencies 

between the hub-height wind speeds at different sites. This strong spatial correlation will be explicitly 

modeled and leveraged in AIRU-WRF for improved forecasting performance. The wind rose plot in the 

right panel suggests that the prevailing winds are mostly westerly in this geographical region. Season-

specific rose plots (not shown here) further reveal distinct seasonal variations in the magnitude and direction 

of wind conditions. Both NYSERDA and ASOW datasets are available publicly and careful data processing 

has been carried out to fill out missing values and/or correct anomalous measurements [1, 2].    

2.2 Numerical Weather Predictions from RU-WRF: 

The Rutgers University Center for Ocean Observing Leadership (RUCOOL) has run a daily real-time 

version of WRF 4.1., called RU-WRF, which is tailored to the meteorological phenomena along the U.S. 

East Coast and across the NY/NJ Bight. RU-WRF runs a parent nest at 9 km resolution out to 120 hours, 

and a child nest centered on the NJ shelf at 3 km resolution out to 48 hours, generating hourly forecasts of 

multiple meteorological variables. The model data archived from December 2019 to March 2023 includes 

hourly output compiled from the 3-km domain model. A 1-km resolution is run occasionally for scientific 

experiment purposes with parametrized turbine inputs. This data was generated through support of the NJ 

Board of Public Utilities (NJBPU) and has been made publicly available [3].  

Once the data requirements have been met, the project team then transitioned to the development 

of the forecasting technology and evaluation experiments. This is presented in Section 3.  
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3 AIRU-WRF: Modeling and Evaluations  
This Section begins by describing the methodological components of the AIRU-WRF technology, and their 

key technical details (Section 3.1.). This is then followed by Section 3.2. which presents an overview of the 

key results from the forecasting evaluation of AIRU-WRF.  

3.1 AIRU-WRF – Methodology Development  

AIRU-WRF is a hybrid forecasting model – it integrates physics-based outputs from an NWP model and 

ML components, with the goal of producing forecasts that are superior to those obtained using NWP or 

purely ML models, independently. Table 2 summarizes the three core modules comprising AIRU-WRF, 

namely: The NWP down-scaler; the ML-based wind forecaster; and the ML-based power predictor.  

Below, we conceptually summarize the key technical details of these modules, but a complete 

description of their methodological and implementation details can be found in our recent publications [4-

7].  Figure 3 shows how the three methodological modules of AIRU-WRF are connected, their 

inputs/outputs, as well as key methodological details.  

Table 2: The three modules comprising AIRU-WRF and their description. 

Module  Module Name Description 

1 
NWP Down-

scaler 

A data-driven calibration of NWP, aimed at correcting the multi-type biases of 

NWP outputs when downscaled at higher spatial and temporal resolutions.  

2 
ML-based Wind 

Forecaster 

A probabilistic ML model that learns the spatial and temporal dependencies for 

enhanced extrapolation, along with a time-dependent ensemble for improving 

forecast skill across multiple time scales.  

3 Power Predictor 

A probabilistic ML model (considering input uncertainty) to convert, 

probabilistically, the hub-height wind speed forecast distributions into wind power 

production forecasts, enabling scenario generation and uncertainty quantification.  
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Figure 2: Modules of AIRU-WRF, including inputs, modeling details, and outputs 

 

a. NWP Down-scaler: When downscaled at higher spatial and temporal resolutions, NWPs can suffer 

from noticeable biases and imprecisions. Figure 3 shows two separate days of hourly wind speed forecasts 

from the base numerical weather model RU-WRF, along with 10-min co-located hub-height measurements 

from the nearest buoy. When downscaled to the 10-minute, site-specific resolution at which the forecasts 

are needed, it is evident that NWPs, despite being generally able to predict the large-scale patterns of wind 

propagation, exhibit notable errors and multiple types of biases, including temporal bias (early/late 

predictions) and shift biases (under- or over-predictions). These are not specific to RU-WRF and are 

commonly observed when assessing even the best in-class NWP models [8]. This calls for a rigorous 

statistical treatment to explicitly correct these multi-type biases and produce precise predictions of 

satisfactory accuracy and operational value to support high-fidelity decision-making.    

Hub-height wind 
measurements

Numerical Weather 
Predictions

NWP Down-scaler*

Goal: Correct multi-type biases 
of meso-scale numerical 
weather models. 

Method: A statistical regression
model with additive and 
multiplicative components to 
regress hub-height data on co-
located NWPs.

ML-Based Wind Forecaster *

Goal: mine spatial and temporal 
dependencies for high-
resolution predictive modeling

Method: A probabilistic ML 
model fusing NWPs and 
observations for extrapolation 
over space and time

ML-Based Power Predictor

Goal: convert, probabilistically, 
wind speed forecasts to wind 
power predictions. 

Method: A probabilistic ML 
model mimicking a wake-
corrected wind power curve 
model, and considering input 
uncertainty. 

* Two variants of AIRU-WRF are developed for short- and long-term modeling, which 
are combined using a time-dependent weighting scheme. 

Hub-height wind 
speed forecast 
distributions

Wind power 
predictive 

distributions

Time series of wind 
speed forecasts and 

scenarios

Spatial wind field 
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Time series of wind 
power forecasts and 
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Wake-corrected 
wind power curves

Data Input

Modeling

Data Output
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Figure 3: Two days of hub-height wind speeds and co-located NWPs from RU-WRF, suggesting overall reasonable 

accuracy but also significant downscaling biases.  

 

To address this, the NWP down-scaler consists of a statistical regression function that estimates a 

relationship between the site-specific hub-height measurements and the set of co-located NWPs. The 

following overarching parametric form is adopted: 𝑎𝑎𝑇𝑇𝑌𝑌�𝑙𝑙(𝑠𝑠, 𝑡𝑡) + 𝑏𝑏𝑇𝑇𝐺𝐺(𝑠𝑠, 𝑡𝑡) + 𝑐𝑐𝑇𝑇𝐺𝐺(𝑠𝑠, 𝑡𝑡)𝑌𝑌�(𝑠𝑠, 𝑡𝑡), where 𝑎𝑎, 𝑏𝑏, 

and 𝑐𝑐  are parameter vectors representing the regression coefficients, whereas 𝑌𝑌�𝑙𝑙(𝑠𝑠, 𝑡𝑡) =

[𝑌𝑌�(𝑠𝑠, 𝑡𝑡), … ,𝑌𝑌�(𝑠𝑠, 𝑡𝑡 − 𝑙𝑙)]𝑇𝑇 are lagged NWP forecasts of the hub-height wind speeds at location 𝑠𝑠 and up to 

lag 𝑡𝑡 − 𝑙𝑙. Here, 𝐺𝐺(𝑠𝑠, 𝑡𝑡) is a regressor matrix, which includes standard outputs of NWP forecasts for various 

meteorological covariates (e.g., temperature, pressure, humidity), as well as other “engineered” features 

that are not readily forecast by NWP systems but can have explanatory power in predicting hub-height 

winds, such as geostrophic winds, pressure gradients, and sea-land temperature differences. Note that the 

NWP down-scaler includes regression and interaction terms that are designed to correct for both additive 

and multiplicative biases. Furthermore, a dynamic feature selection strategy, implemented in a sliding 

window fashion, continuously identifies and updates a concise subset of informative exogenous variables 

for inclusion in the regressor matrix 𝐺𝐺(𝑠𝑠, 𝑡𝑡). This feature selection procedure equips the forecasting model 

with the capability to dynamically determine the subset of meteorological covariates that are most 

predictive of NWP biases, which naturally are expected to change over space and time. Figure 4 shows the 

output of this dynamic feature selection procedure, where panel k (Bottom panel) shows the number of 

covariates included in the regressor matrix 𝐺𝐺(𝑠𝑠, 𝑡𝑡) over time. More details on this procedure and on the 

NWP downscaler is included in our published manuscript [4].  
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Figure 4: (a)-(h): Pearson Correlation of various meteorological NWP covariates with the hub-height measurements, 

showing how the explanatory power of various covariates can dynamically change over time. (k): The number of 
features selected in the AIRU-WRF downscaler over time. Rolling index refers to a sliding window (for this figure, 

1 roll index = 6 hours).  

 

In addition, we also developed a variant of the NWP down-scaler that acknowledges the 

heterogeneity of hub-height winds and power generation due to dynamic meteorological phenomenon along 

the U.S. East Coast, such as coastal upwelling – See Figure 5. Coastal upwelling is a common 

oceanographic process that occurs along stratified continental shelves, including in the U.S. Mid-Atlantic. 

Along-shore frictional wind stress, with the coastline to the left of the wind in the northern hemisphere (and 

right in the southern hemisphere) advects warm surface waters offshore. These warm surface waters are 

replaced through the upwelling of colder deeper waters, which directly interact with the overlying 

atmosphere. This phenomenon is well-known has been recently shown to directly impact the air-sea heat 

flux, the shape of the marine boundary layer, atmospheric stability, as well as the timing and location of 

important atmospheric phenomena such as sea breezes—all factors known to affect offshore wind power 

production. In fact, recent evidence from multiple geographical locations suggests that upwelling events 

can be associated with considerable variations in hub-height wind speeds and power production of offshore 

wind turbines. The central idea of our upwelling-informed AIRU-WRF model is to define a set of regimes 

(or states) based on the information of whether coastal upwelling is active or not, as derived from satellite 

imagery, and then invoke regime-specific NWP down-scaler functions that are trained on observations 

specific to the currently active regime. More details on this regime-switching variant of AIRU-WRF are 

available in our published manuscript [5].  
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Figure 5: (a) SST on 07/28/2021 (upwelling active) with visible temperature gradient between nearshore and 

offshore areas. (b) SST on 08/10/2021 (upwelling inactive). (c)-(d): Boxplots of hub-height wind speeds and scaled 
power, suggesting distinct distributions when upwelling is active (red) or inactive (green). 

 

b. ML-Based Forecaster: The ML-based forecaster directly acts on the residuals of the NWP down-

scaler and is intended to capture site-specific, high-frequency variations that are difficult to capture using 

meso-scale NWP information. Specifically, the ML-based forecaster consists of a spatio-temporal Gaussian 

Process (GP) model. GPs are probabilistic, kernel-based ML models that model spatial and temporal 

dependencies using a kernel function.  The kernel adopted in AIRU-WRF is a weighted combination of a 

radial basis function (RBF) and a physically motivated Lagrangian kernel function. This kernel function 

takes both NWP and observational data as inputs, and generates weights, based on spatial and temporal 

proximity, which enable extrapolations over space and time. One major advantage of GP models is their 

ability to output predictive distributions, rather than point/deterministic forecasts, that naturally embed 

spatial and temporal dependencies.  

To produce day-ahead forecasts for every hour of the day, we developed two separate variants of 

AIRU-WRF for short- and long-term forecasting, respectively. This is because forecasting models perform 

well when tailored to specific forecast horizons, that is, methods for short-term forecasting (e.g., a few 

hours ahead) quickly degrade in performance as the forecast horizon extends (e.g., day-ahead) and vice 

versa. While sharing the same model formulation, the short- and long-term models differ primarily in their 

input features, their training data requirements, as well as their parameter settings, with the long-term model 

favoring the inclusion of meso-scale meteorological features that are able predictors of day-ahead wind 

patterns. To name one example of such meso-scale features, we define pressure gradients as the difference 

in atmospheric pressure between two locations at time 𝑡𝑡, which are known to be a meteorologically relevant 

indicator of weather fronts. We implemented a bivariate clustering analysis wherein we partition the wider 
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spatial region (roughly 300 × 300 𝑘𝑘𝑚𝑚2 area) into a number of clusters, based on the NWP forecasts of air 

pressure and wind direction. Specifically, let 𝐶𝐶𝑡𝑡 = {𝐶𝐶𝑡𝑡,1,𝐶𝐶𝑡𝑡,2,⋯ ,𝐶𝐶𝑡𝑡,𝑘𝑘} denote the set of clusters identified 

on a given day 𝑡𝑡, for each pair of clusters (𝐶𝐶𝑡𝑡,𝑖𝑖 ,𝐶𝐶𝑡𝑡,𝑗𝑗), we can compute the pairwise pressure gradient as: 

Δ𝑃𝑃𝑡𝑡,𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑡𝑡,𝑖𝑖 − 𝑃𝑃𝑡𝑡,𝑗𝑗�,∀𝑖𝑖, 𝑗𝑗 ∈ {1,2,⋯ , 𝑘𝑘}, 𝑖𝑖 ≠ 𝑗𝑗 

where 𝑃𝑃𝑡𝑡,𝑖𝑖  is the spatially averaged NWP forecast of air pressure at time 𝑡𝑡  and cluster 𝑖𝑖 . The selected 

pressure difference is then integrated into the regressor matrix of the NWP down-scaler as an additional 

predictive feature to enhance the forecast accuracy for the long-term. Figure 6 illustrates the spatial 

clustering results combined with wind vectors and corresponding air pressure contours for two consecutive 

days. Generally, the long-term model adopts a more “liberal” feature selection procedure, allowing the 

inclusion of more physics-based covariates based on the knowledge that large-scale meteorological patterns 

should intuitively play a more decisive role in day-to-day variations of wind propagation patterns. 

Meanwhile, as the forecast horizon becomes shorter (< 6 hours), more reliance on the near history of the 

process (and less on physics-based covariates) is expected to yield better forecasting performance.  

 
Figure 6: Cluster map with wind vector and air pressure information. The top panel is the cluster map overlaid with 

wind vectors; different colors represent different clusters. The bottom panel is the air pressure contour plot. 
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To reconcile the short- and long-term variants of AIRU-WRF, an ensemble approach combines the 

outputs from the two forecast models using a time-dependent weighting function which dynamically adapts 

to each model’s degrading performance over time, ensuring temporally continuous forecast outputs. This 

enables the derivation, in closed form, of a probabilistic characterization of the forecast distribution of hub-

height wind speeds, ℙAIRUWRF(𝒀𝒀), where 𝒀𝒀 is the multivariate random variable denoting the hub-height 

wind speed forecasts for the full forecast horizon, i.e., from 𝑡𝑡 + 1, … , 𝑡𝑡 + 24 hours ahead. This predictive 

distribution, ℙAIRUWRF(𝒀𝒀), can be used to generate point/deterministic forecasts, by using the mean of the 

distribution, referred to as  𝒚𝒚�airuwrf . The specific methodological details of this ensemble approach, along 

with the data and codes, are currently pending peer review and will be made publicly available soon [7].   

c. ML-Based Power Predictor: AIRU-WRF outputs a forecast distribution of hub-height offshore 

wind speeds, ℙAIRUWRF(𝒀𝒀). A probabilistic approach is then developed to convert the wind speed forecast 

distributions, ℙAIRUWRF(𝒀𝒀), into closed-form predictive distributions of wind power, ℙAIRUWRF(𝒁𝒁|𝒀𝒀), 

where 𝒁𝒁 is the multivariate random variable denoting the offshore wind power production forecasts for the 

full forecast horizon, from 𝑡𝑡 + 1, … , 𝑡𝑡 + 24 hours ahead. These predictive distributions can then utilized to: 

(1) efficiently generate trajectories (or scenarios) of wind power production at key offshore wind farms that 

naturally embed temporal dependencies; and (2) analytically derive important statistical measures, such as 

probability of exceedance (POE), which are key inputs to the subsequent economic and reliability analysis.  

A probabilistic wind power curve model, based on a probabilistic GP model, is constructed using 

the 15 MW, wake-corrected wind power curve data adopted from NY-ISO [Link: 

https://www.nyiso.com/documents/20142/36079056/4%2023_02_07_ICAPWG_OffshoreWindProfileDe

velopment.pdf]. Using the GP model, we can derive a closed-form expression for the predictive distribution 

of 𝒁𝒁 integrating over the wind speed forecast distribution 𝒀𝒀.  A Monte-Carlo approximation is invoked to 

approximate this predictive distribution, ℙAIRUWRF(𝒁𝒁|𝒀𝒀). One can then leverage ℙAIRUWRF(𝒁𝒁|𝒀𝒀) to derive 

a point/deterministic forecast of offshore wind power production as the mean vector of this distribution, 

which would be denoted as 𝝁𝝁�𝒁𝒁.   

Furthermore, the predictive distribution of offshore wind power production, ℙAIRUWRF(𝒁𝒁|𝒀𝒀), can 

be used to efficiently sample scenarios (or trajectories) of offshore wind power production and compute 

important statistical metrics such as the probability of exceedance (POE). POE denotes the probability that 

the wind power will exceed a certain critical threshold. Given the predictive distribution of 𝑍𝑍, an analytical 

expression for POE can be derived as follows:  

https://www.nyiso.com/documents/20142/36079056/4%2023_02_07_ICAPWG_OffshoreWindProfileDevelopment.pdf
https://www.nyiso.com/documents/20142/36079056/4%2023_02_07_ICAPWG_OffshoreWindProfileDevelopment.pdf
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𝑃𝑃𝑃𝑃𝐸𝐸𝑍𝑍(𝑧𝑧) = 𝑃𝑃(𝑍𝑍 ≥ 𝑧𝑧) = 1 − 𝐹𝐹(𝑧𝑧), 

where F(𝑧𝑧) is the cumulative density function (CDF). Any quantile of offshore wind power can also be 

computed analytically. This POE metric will be a critical input to the subsequent economic and reliability 

analysis. More details on the derivation of the offshore wind power predictive distribution and the 

simulation of offshore wind power scenarios are currently under peer review and will be made publicly 

available soon [15].  

3.2 Forecasting Experiments and Results 

We focus on day-ahead forecasts in hourly resolution. We undertake a rolling/sliding window scheme for 

the model training and testing, where for each roll/sliding window, we train our model using 𝑑𝑑 days of 

historical data and obtain the day-ahead forecast (one hour up to 24 hours ahead), and then slide by 24 hours 

and repeat this process, until all test data is exhausted. For the short-term model, we set 𝑑𝑑 = 10 days, while 

for the long-term model, we set 𝑑𝑑 = 60 days. This rolling/sliding window procedure is repeated for a total 

of 183 days. As a result, we obtain 183 * 24 = 4392 hourly testing instances for model evaluation at each 

location. We evaluate the performance of AIRU-WRF against the following benchmarks:  

• NWP: These are the hourly day-ahead forecasts of hub-height wind speed from RU-WRF (the 

base NWP model on which the AIRU-WRF model is based).  

 

• PER: refers to the persistence model, and is a standard benchmark that assumes the most recently 

observed wind speed value will persist into the future. It is highly competitive in very short-term 

horizons, but quickly degrade in performance as the forecast horizon extends.  

 

• LSTM: Long short-term memory is a deep learning model based on recurrent neural networks, 

particularly well-suited for modeling time series data. A separate model is trained for each 

location using stochastic gradient descent (SGD) to optimize the network parameters through the 

Deep Learning Toolbox in Matlab. A grid search was used to tune the hyperparameters of the 

model. The model consists of 100 hidden units and is trained for 100 epochs. The initial learning 

rate is set to 0.005 and is reduced by a factor of 0.1 every 30 epochs. The LSTM model here does 

not utilize NWP information as input, and hence is designed so as a representative of a purely 

data-driven, deep learning model.  
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• ARIMA: This is the autoregressive integrated moving average with exogenous inputs (ARIMA), 

and is trained separately for each location. The model parameters and the autoregressive 

coefficients are optimized using the pmdarima package in Python.  

 
 

Table 3 shows the Mean Absolute Error (MAE) and Continuous Ranked Probability Score (CRPS) 

value of all models for hub-height offshore wind speed forecasting. The results in this Table are aggregated 

across all locations and forecast horizons. Overall, AIRU-WRF achieves considerable improvements 

relative to all forecasting benchmarks. Specifically, it outperforms data-driven methods (LSTM, ARIMA-

X, and PER) by 49.4 − 64.8%  and physics-based models (RU-WRF) by 7.4 − 7.6%.  

 

Table 3: Evaluation of offshore 24-hour ahead wind speed forecast (hub-height), averaged across all spatial 

locations and forecast horizons (1-hr to 24-hrs ahead). Bold-faced values denote best performance.  

 AIRU-WRF LSTM ARIMA NWP (RU-WRF) PER 

Average MAE 1.4710 3.4923 2.9092 1.5881 4.1328 

% Improvement - 57.9% 49.4% 7.4% 64.4% 

Average CRPS 1.1201 - 2.2736 1.2120 3.1865 

% Improvement  - - 50.7% 7.6% 64.8% 

 

Figure 7 displays the MAE values, across the forecast horizon [1, …, 24] hours ahead, for AIRU-

WRF (orange triangles) versus RU-WRF (blue squares). The forecasting results in this Figure show a clear 

superiority of AIRU-WRF over RU-WRF across all forecast horizons. The ability of AIRU-WRF to 

combine data-driven insights with physics-based NWP information, as well as to dynamically adapts to 

each source of information’s degrading performance over time (through its time-dependent ensemble) 

proves to be key in producing superior forecasts across the look-ahead horizon.  
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Figure 7: Forecast error (in MAE) of AIRU-WRF vs. that of RU-WRF plotted versus the forecast horizon in hours. 
The errors have been averaged across all spatial locations. Clearly, AIRU-WRF can improve upon RU-WRF across 
all forecast horizons. 

 

 

Figure 8 shows the time series of AIRU-WRF's offshore wind speed forecasts for a select period in 

May, 2020, suggesting a faithful alignment with actual observations. The 90% prediction intervals (PI) 

produced by AIRU-WRF are also displayed. Most of the observations fall within the 90% PI, indicating 

that AIRU-WRF’s uncertainty quantification has adequate coverage. The ability of AIRU-WRF to adjust 

forecast biases is demonstrated in Figure 9(a)-(b), where the true versus forecast values for AIRU-WRF 

show a more symmetric clustering around the 45o line, relative to those from RU-WRF.  
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Figure 8: AIRU-WRF forecasts for a sample week in May 2020. 

 

 
Figure 9: (a)-(b) Comparing AIRU-WRF and RU-WRF: On average, AIRU-WRF’s forecasts are noticeably closer 

to the true values, yielding a significant reduction in forecast bias.  

 

Unique to AIRU-WRF is its ability to make forecasts at locations where no observations are 

available. Those are used to produce spatial wind field forecast “maps” in the form of evolving two-

dimensional images for a region of interest. Figure 10 shows examples of those wind field forecast maps 

on a select day, on top of the OSW energy lease areas in the NY/NJ Bight. A video showing the evolution 



21 
 

of these wind field forecast maps can found at the following webpage: 

https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-

s-east-coast/. These maps can be effective in communicating AIRU-WRF's outputs to stakeholders and 

forecast users in the OSW energy industry.  

 
Figure 10: AIRU-WRF’s spatial wind field forecast maps as evolving 2-dimensional images. A dynamic video 
illustration can be found at this webpage: https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-

offshore-wind-forecasting-model-for-the-u-s-east-coast/ 

 

Finally, the probabilistic nature of AIRU-WRF enables it to generate, in a matter of seconds, 

temporal trajectories (scenarios) of hub-height wind speeds and offshore wind production to support 

decision-making under uncertainty. This is demonstrated in Figure 11 which shows ten sampled OSW wind 

speed (left) and power production (right) scenarios generated by the AIRU-WRF day-ahead model (left 

panel) for a select period in February 2020. 

https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/
https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/
https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/
https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/
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Figure 11: Scenario generation using AIRU-WRF for a week in February 2020 (10 scenarios shown).  
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4 Economic and Reliability Evaluation  
Traditional forecast evaluations rely on statistical accuracy metrics, which can be insufficient to 

inform grid operations. As offshore wind deployment grows, it is increasingly important to assess forecasts 

based on their operational value. This project seeks to evaluate improved offshore wind forecasts through 

two major categories: (1) economic evaluation, which examines reductions in operational production costs 

enabled by more accurate forecasts, and (2) reliability evaluation, which measures the impact on system 

operational adequacy and loss-of-load risk under uncertainty [15].  

4.1 Economic Evaluation 

The economic benefit of improved offshore wind forecasting on grid operation is evaluated and 

quantified in terms of reduced production cost through the reduction of dynamic reserve MW. Dynamic 

reserve technology involves the real-time procurement of operating reserve resources to accommodate 

system contingencies and renewable forecast uncertainties. More accurate offshore wind forecasts enable 

grid operators to better manage uncertainty, optimize reserve procurement, and reduce overall production 

costs by minimizing operating reserve requirements. 

4.1.1 Dynamic Reserve Calculation 

In our study, we adopt NYISO's dynamic reserve procurement approach, currently transitioning from 

market design to implementation. It accounts for generation and transmission contingencies and 

simultaneous loss from geographically clustered intermittent resources. 

• Loss of Generation Resources: Dynamic reserves are designed to cover the largest generation loss, 

minus available headroom, which represents the system's ability to import reserves. To manage the 

loss of generation in dynamic reserves for a 30-minute product, NYISO suggests the following 

formulation: 

 

𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑅𝑅𝐴𝐴𝑎𝑎

30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⋅ � max
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛𝑅𝑅𝐴𝐴𝑎𝑎 

�𝑔𝑔𝑔𝑔𝑛𝑛𝑘𝑘𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑠𝑠𝑘𝑘𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�� − 𝑅𝑅𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (4.1.1) 

where, in the reserve area 𝑎𝑎 at time step 𝑡𝑡 , 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the 30-minute total MW reserve 

requirement; 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑅𝑅𝐴𝐴𝑎𝑎
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is a multiplier; 𝑔𝑔𝑔𝑔𝑛𝑛𝑘𝑘𝑖𝑖 is the generation capacity of generator 𝑘𝑘 ; 

𝑟𝑟𝑟𝑟𝑠𝑠𝑘𝑘𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the 30-minute reserve assigned to generator 𝑘𝑘 ; 𝑅𝑅𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the available 

headroom.  
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• Loss of Transmission Resources: Dynamic reserves account for lost energy imports due to 

transmission outages. The requirement is based on the difference between post-contingency 

interface limits and actual flows after the largest line loss. External proxies are treated as generators 

in NYCA reserve calculations. 

  

30 min 𝑢𝑢 𝑡𝑡𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑁𝑁−2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑎𝑎𝑖𝑖 − 𝑅𝑅𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑎𝑎𝑖𝑖

            (4.1.2) 

where, in the reserve area 𝑎𝑎  at time step 𝑡𝑡 , 30 min 𝑢𝑢 𝑡𝑡𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
is the post-contingency 30-

minute import capability; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑁𝑁−2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑎𝑎𝑖𝑖 is the emergency limit for the 𝑁𝑁 − 2  contingency and 

𝑅𝑅𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑎𝑎𝑖𝑖
 is the current flow on the interface. 

  

• Uncertainties from Renewable Resources: To address variability from weather-dependent 

renewables and under-forecasting, NYISO uses a POE forecast, typically POE90 or POE95, to 

quantify potential energy at risk. Dynamic reserve requirements are based on the difference between 

scheduled IPP output and POE forecasts, adjusted for external reserve capacity, as defined by: 

𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≥ �� 𝐼𝐼𝐼𝐼𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖

 

𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖

− � 𝑋𝑋𝑋𝑋
 

𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖

% 𝑃𝑃𝑃𝑃𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑖𝑖� − 𝑅𝑅𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑖𝑖(4.1.3) 

where, in the reserve area 𝑎𝑎  at time step 𝑡𝑡  , 𝐼𝐼𝐼𝐼𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 is the scheduled energy output from IPP, 

which is usually POE50 value of forecast renewable generation. 𝑃𝑃𝑃𝑃𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑖𝑖 is the selected POE 

of renewable production uncertainties up to which the operating reserve can accommodate; and 

𝑅𝑅𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑖𝑖  is the headroom of the intertie transmission lines connecting with neighboring 

areas that provide the operating reserve.  

 

4.1.2 Correlation Effect on Dynamic Reserves 

Wind power uncertainty arises from the nonlinear wind speed–power curve, leading to skewed and 

variable forecast errors. Small changes in wind speed can cause large output deviations, making accurate 

reserve sizing essential. When aggregating reserves across multiple wind farms, spatial correlation becomes 

a key factor. Wind farms spreading over a wide area experience only partially coincident fluctuations: 

output correlation generally decreases as the distance between sites increases [9]. Distant wind farms are 

less likely to experience simultaneous power drops due to varying weather systems, while closely located 
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farms under the same weather front can exhibit high output correlation, increasing aggregate uncertainty. 

Uncorrelated or weakly correlated sites offer diversity, reducing total output variability. Ignoring spatial 

correlation can lead to significant reserve misestimation—assuming independence underestimates reserve 

needs, risking underproduction, while assuming perfect correlation overestimates requirements, increasing 

costs. Accurate correlation modeling is essential for risk-aware, cost-effective dynamic reserve sizing based 

on probabilistic forecasting. 

To quantify the aggregated dynamic reserve requirement under correlated uncertainty, we adopt a 

correlation-based risk aggregation approach—commonly applied in financial risk management for the 

calculation of the Solvency Capital Requirement (SCR) [10]. The total dynamic reserve requirement is 

computed as: 

𝐷𝐷𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ���𝑅𝑅𝑖𝑖 × 𝑅𝑅𝑗𝑗 × 𝜌𝜌𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

    ,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁                              (4.1.4) 

where, 𝑅𝑅𝑖𝑖   and 𝑅𝑅𝑗𝑗   are the individual plant reserve requirements; 𝜌𝜌𝑖𝑖,𝑗𝑗 is the correlation in between plant 𝑖𝑖 

and plant 𝑗𝑗; and 𝑁𝑁 is the number of plants. 

This formulation captures the spatial dependency in generation uncertainty, enabling operators to 

leverage geographic diversity for optimal reserve procurement. Wider uncertainty from one site can be 

offset by narrower ranges from another, improving reserve efficiency—especially when aggregating across 

regions. As site correlation decreases, the aggregate reserve requirement declines, reflecting reduced system 

risk through spatial diversification. 

To demonstrate the impact of correlation, two offshore wind farms (A0487 and A0512) with 

probabilistic forecasts from the AIRU-WRF model are analyzed. Table 4 presents their POE90, POE50 

values, and individual reserve requirements. 

Table 4: Dynamic reserve calculated from probabilistic wind power forecasting. 

A0487 (Capacity 930 MW) A0512 (Capacity 2070 MW) 

POE90 
(MW) 

POE50 
(MW) 

Individual  
Reserve 
(MW) 

POE90 
(MW) 

POE50 
(MW) 

Individual  
Reserve 
(MW) 

344.08 454.12 110.04 686.93 951.97 265.03 
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Equation (4.1.4) is used to compute total reserve requirements for the combined system under 

varying correlation levels. Table 4 summarizes the aggregated reserve for different correlation coefficients 

between the two sites. 

Table 5: Aggregated dynamic reserve with varying correlation coefficient. 

Correlation Coefficient 1.00 0.80 0.60 0.40 0.20 0.00 
Reserve (MW) 375.10 359.20 342.60 325.10 306.60 286.97 

Reserve (% of Nameplate Cap.) 12.50% 11.97% 11.42% 10.84% 10.22% 9.57% 
 

Result shows that, when the correlation is high (1.0), the reserve nearly equals the sum of individual 

reserves (375.07 MW or 12.5% of capacity). As correlation decreases, the required reserve drops 

significantly—down to 286.97 MW (9.57%) at zero correlation—demonstrating the benefit of spatial 

diversity. Lower correlation reduces reserve needs by offsetting fluctuations across sites. Incorporating this 

effect improves reserve accuracy and reduces system-wide costs. 

4.1.3 Production Cost Calculation 

In this study, the historical operating reserve price from NYISO is analyzed and the production cost 

for reserve procurement is calculated by multiplying the reserve MW procurement requirement and the 

price as 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⋅ Pr 𝑖𝑖 𝑐𝑐𝑒𝑒𝑎𝑎𝑖𝑖                                                           (4.1.5) 

A more robust approach is to use price quantiles, which offer probabilistic insights and more 

reliable results. This leads to a modified formula that incorporates the price at a given percentile. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝐴𝐴𝑎𝑎𝑖𝑖
30𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⋅ Pr 𝑖𝑖 𝑐𝑐𝑒𝑒𝑎𝑎𝑖𝑖(𝑃𝑃),     ∀𝑃𝑃  ∈  {1,2, … ,99}                     (4.1.6) 

 

4.1.4 Case Study on Economic Evaluation 

In this study, we assess the economic impact of improved offshore wind forecasting on dynamic 

reserve requirements using the New York power system as a case study. In this study, we evaluate our 

improved offshore wind forecast model, AIRU-WRF, which aims to reduce the forecast band gap for 

dynamic reserve calculations. The performance of the model is compared to two benchmark models: the 
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NWP and Persistence model. For both benchmarks, forecasted quantiles are generated by superimposing 

historical residuals onto the predictions. 

The dynamic reserve requirements vary across different plant locations due to site-specific 

variations in wind power generation. Within a given site, reserve needs also exhibit seasonal and diurnal 

fluctuations, reflecting the temporal variability in wind generation uncertainty. We present the seasonal 

average reserve requirements as a percentage of nameplate capacity for various plants locations. Table 6 

summarizes these values based on the AIRU-WRF model. Overall, the summer and winter seasons 

generally require higher reserve margins compared to Spring and Fall.  

Table 6: Seasonal dynamic reserve requirements as percentage of nameplate capacity (Model: AIRU-WRF; 
temporal correlation preserved during sampling). 

Plants Winter Spring Summer Fall Capacity 
(MW) 

A0487  15.65% 12.91% 16.91% 13.96% 924 
A0512  15.67% 13.61% 17.06% 14.80% 130 
A0517  15.84% 13.14% 17.40% 14.59% 1230 
A0520  16.07% 12.72% 17.05% 14.09% 2076 
A0538 15.39% 12.93% 16.63% 14.39% 1404 
A0539  15.28% 12.87% 16.20% 14.47% 1314 
A0544  15.65% 13.16% 17.20% 14.68% 1314 
E05N 15.69% 12.91% 17.20% 14.33% 5674 

E06/ASOW6 15.17% 12.93% 16.16% 14.61% 2718 
 

To evaluate the performance of the improved AIRU-WRF forecasting model, we focus on sites 

where direct wind speed measurements are available—like, locations E05N and E06/ASOW6. Since 

observational data is limited to these positions, we validate model performances by aggregating wind farm 

capacities within the proximity of E05N or E06/ASOW6. We computed dynamic reserves for these two 

locations to evaluate the improved model (AIRU-WRF) performance over two benchmark models and the 

results are summarized in Table 7.  

Table 7: Performance analysis of models in terms of dynamic reserve requirements (percentage of nameplate 
capacity). 

Seasons 
E05 E06/ASW6 

AIRU-WRF NWP PER AIRU-WRF NWP PER 
Winter 15.69% 17.56% 33.20% 15.17% 18.33% 31.32% 
Spring 12.91% 15.96% 32.93% 12.93% 16.39% 32.90% 

Summer 17.20% 19.87% 32.68% 16.16% 21.41% 32.38% 
Fall 14.33% 17.70% 32.64% 14.61% 17.38% 30.53% 
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The AIRU-WRF model consistently provides lower seasonal dynamic reserve requirements 

(expressed as a percentage of nameplate capacity), reflecting reduced forecasting uncertainty. Additionally, 

seasonal analysis shows that reserve requirements are lowest in Spring and highest in Summer, aligning 

with observed wind power variability patterns. Therefore, dynamic reserve design must explicitly account 

for seasonal variability. 

 
Figure 12: 10 min Spinning Reserve Average Price (2019 – 2023). 

 

To calculate reserve procurement cost, we analyzed five years of 10 minutes and 30 minutes operating 

reserve price data (2019-2023) across various load zones from NYISO. The specific zone data can be used 

for offshore wind interconnection points. As illustrated in Figure 12, the reserve prices also exhibit 

seasonality. Summer and Spring exhibit a wider price distribution compared to Winter and Fall. Notably, 

the median price (P50) is typically higher during the Winter season. In this study, the P50 price for each 

season is used to ensure a representative measure of typical reserve costs across different periods. 
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Figure 13: Annual reserve procurement cost comparison a) without temporal correlation b) with temporal correlation 

consideration. 

 

Seasonal dynamic reserve procurement cost with and without considering temporal correlation is 

demonstrated in Figure 13. Although reserve requirements are highest in Summer, procurement costs peak 

in Winter due to higher reserve prices. Thus, identical reserve percentages can incur different costs across 

seasons due to price variability. By calculating annual reserve procurement cost for all models, it is evident 

that the AIRU-WRF model consistently outperforms both benchmark models (NWP and PER), regardless 

of temporal correlation inclusion as shown in Figure 13. Without temporal correlation, AIRU-WRF 

achieves reserve procurement cost savings of approximately $1.65 million over NWP model annually. 

Incorporating temporal correlation further enhances these savings, reaching up to $3.20 million annually, 

emphasizing the significant economic benefits of improved forecasting methodologies in dynamic reserve 

design. 
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Figure 14: Correlation coefficient among sites for summer season b) Aggregated dynamic reserve considering 

correlation. 

 

In Section 4.1.2, we incorporated correlation considerations into the aggregated dynamic reserve 

calculation. Pearson partial correlation coefficients for generated wind power profiles were considered. For 

the summer season, the correlation of wind power generation across different sites is shown in Figure 14(a). 

As evident, closely situated sites (e.g., A0487 and A0517) exhibit high correlation, indicating simultaneous 

wind generation fluctuations and thus higher operational risks. Conversely, geographically distant sites 

show lower correlations, reducing aggregated variability. For instance, A0487 and A0539 have a correlation 

coefficient of 0.62, significantly lower than 0.97 between A0487 and A0517. This spatial correlation is 

essential for accurately capturing the risk-based aggregation of dynamic reserves. Using Equation (4.1.4), 

dynamic reserve calculations considering correlations based on the AIRU-WRF forecast model are 

summarized in Figure 14(b). When correlation is assumed to be maximal (1.00), dynamic reserves equal 

the simple summation across individual sites, yielding no diversity benefits. Conversely, when assuming 

zero correlation, maximum diversity benefits reduce the aggregated reserve requirements.  



31 
 

 
Figure 15: Yearly dynamic reserve procurement cost considering spatial correlation. 

 

We evaluated total seasonal reserve procurement costs across all plant locations using seasonal 

price information. The AIRU-WRF model consistently outperformed both the NWP and PER benchmark 

models for all seasons. While reserve requirements and associated costs demonstrate notable seasonal 

variability, AIRU-WRF consistently minimizes procurement expenses. Furthermore, considering temporal 

correlation alone, annual reserve procurement costs using AIRU-WRF total approximately $54.68 million, 

resulting in annual savings of about $3.2 million compared to NWP, and over $61 million compared to the 

PER approach. Incorporating spatial correlation further enhances these savings. As illustrated in Figure 15, 

accounting for spatial correlation reduces AIRU-WRF based annual procurement costs to approximately 

$50.74 million. This spatial correlation consideration provides additional annual savings of around $3.94 

million compared to the nonspatial scenario. Thus, explicitly accounting for both temporal and spatial 

correlations significantly improve reserve allocation efficiency and procurement cost savings. 

 

4.2 Reliability Assessment through Operational Resource Adequacy Model 

Power grids face increasing challenges from the uncertainties introduced by rapid integration of 

variable renewable energy sources like land-based wind (LBW) and offshore wind (OSW). Current grid 

operations, focused mainly on single contingencies, lack tools to assess combined uncertainties from load 

and renewable forecasting, leading to gaps in managing tail risks and costly uncertainty reserves. The 

absence of regulatory standards further limits operators' ability to quantify and respond to operational risk. 

To address these issues, we propose Operational Resource Adequacy, a control-room tool that quantifies 
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real-time uncertainties and assesses loss of load risks. The tool consists of two main components: a unit 

commitment model to identify committed generation resources, and a scenario-based DC Optimal Power 

Flow (DC-OPF) model to detect potential resource shortfalls. It incorporates uncertainties from load, LBW, 

and OSW forecasts using Markov Chain Monte Carlo simulations. System responses are evaluated under 

transmission and generation constraints, and key reliability metrics—Loss of Load Probability (LOLP), 

Loss of Load Hours (LOLH), and Expected Unserved Energy (EUE)—are computed to quantify resource 

adequacy. 

To assess grid reliability, forecasting data with uncertainties are required for load (𝑁𝑁(𝐿𝐿𝑡𝑡
𝑓𝑓 ,𝜎𝜎𝑙𝑙𝑙𝑙,𝑡𝑡

2 )), 

land-based wind (𝑁𝑁(𝑃𝑃𝑙𝑙,𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 ,𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡
2 ) ), and offshore wind (𝑁𝑁(𝑃𝑃𝑜𝑜,𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂 ,𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂,𝑡𝑡
2 ) ). For simplicity, these 

uncertainties are modeled as normal distributions 𝑁𝑁(𝜇𝜇,𝜎𝜎2) , at each time step 𝑡𝑡 . The standard 

deviation 𝜎𝜎𝑖𝑖,𝑡𝑡  ,where 𝑖𝑖𝑖𝑖{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐿𝐿𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂}, represent the uncertainty range for each resource. In alignment 

with standard RTO/ISO practices, generation resources are deterministically committed based on forecast 

values for load (𝐿𝐿𝑡𝑡
𝑓𝑓), land-based wind (𝑃𝑃𝑙𝑙,𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿), and offshore wind (𝑃𝑃𝑜𝑜,𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂). Generator commitments are 

established before executing a DC-OPF model, which assesses shortfalls and grid reliability. The unit 

commitment model aims to minimize daily production costs, formulated as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚�� � 𝐶𝐶𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑔𝑔𝑖𝑖,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑖𝑖 ∗ 𝐶𝐶𝑖𝑖𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑖𝑖 ∗ 𝐶𝐶𝑖𝑖𝑆𝑆𝑆𝑆
 

𝑖𝑖∈𝛺𝛺𝐺𝐺𝐺𝐺𝐺𝐺

+ � �𝐶𝐶𝑠𝑠,𝑡𝑡
𝐸𝐸𝐸𝐸𝐸𝐸 ∗ �𝑃𝑃𝑠𝑠,𝑡𝑡

𝐶𝐶 − 𝑃𝑃𝑠𝑠,𝑡𝑡
𝐷𝐷 ��

 

𝑠𝑠∈𝛺𝛺𝐸𝐸𝐸𝐸𝐸𝐸

�
 

𝑡𝑡∈𝑇𝑇 

                  (4.2.1) 

subject to   

� 𝑔𝑔𝑖𝑖,𝑡𝑡

 

𝑖𝑖∈𝛺𝛺𝐺𝐺𝐺𝐺𝐺𝐺

+ � �𝑃𝑃𝑠𝑠,𝑡𝑡
𝐷𝐷 − 𝑃𝑃𝑠𝑠,𝑡𝑡

𝐶𝐶 �
 

𝑠𝑠∈𝛺𝛺𝐸𝐸𝐸𝐸𝐸𝐸

+ � 𝑃𝑃𝑙𝑙,𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿
 

𝑙𝑙∈𝛺𝛺𝐿𝐿𝐿𝐿𝐿𝐿

+ � 𝑃𝑃𝑜𝑜,𝑡𝑡
𝑂𝑂𝑂𝑂𝑂𝑂

 

𝑜𝑜∈𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂

= 𝐿𝐿𝑡𝑡
𝑓𝑓 ,∀𝑡𝑡 ∈ 𝑇𝑇                         (4.2.2) 

 

where the optimization model spans over time periods 𝑇𝑇 and includes traditional generators 𝛺𝛺𝐺𝐺𝐺𝐺𝐺𝐺, OSW 

farms 𝛺𝛺𝑂𝑂𝑂𝑂𝑂𝑂, LBW farms 𝛺𝛺𝐿𝐿𝐿𝐿𝐿𝐿, and energy storage systems 𝛺𝛺𝐸𝐸𝐸𝐸𝐸𝐸. Each generator 𝑖𝑖 𝜖𝜖 𝛺𝛺𝐺𝐺𝐺𝐺𝐺𝐺has a marginal 

cost 𝐶𝐶𝑖𝑖, startup cost 𝐶𝐶𝑖𝑖𝑆𝑆𝑆𝑆 ,  𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶𝑖𝑖𝑆𝑆𝑆𝑆, with power output 𝑔𝑔𝑖𝑖,𝑡𝑡. For the OSW and LBW generated 

power are 𝑃𝑃𝑜𝑜,𝑡𝑡
𝑂𝑂𝑂𝑂𝑂𝑂  and 𝑃𝑃𝑙𝑙,𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿  . Each storage unit 𝑠𝑠 ∈ 𝛺𝛺𝐸𝐸𝐸𝐸𝐸𝐸  , has marginal cost of 𝐶𝐶𝑠𝑠,𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸  , charging and 

discharging power are  𝑃𝑃𝑠𝑠,𝑡𝑡
𝐶𝐶  and  𝑃𝑃𝑠𝑠,𝑡𝑡

𝐷𝐷  respectively. Constraint (4.2.2.) ensures that total generation from 

conventional units, wind farms, and net energy storage contributions meet the forecasted load 𝐿𝐿𝑡𝑡
𝑓𝑓 at all 

times.  

Once the unit commitment signal is derived from the modeling above, the DC-OPF model can be 

initialized for assessing the shortfall. In contrast to the traditional DC-OPF with an objective of minimizing 
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the operational generation cost, the DC-OPF for operational resource adequacy assessment is to maximize 

the total load served subjected to the generation operational constraints and line thermal limits. Note that 

the forced outage rate (FOR) of generation resources and transmission lines is considered in the loss of load 

risk quantification, and the committed generation and/or transmission lines may be out of service in real 

time. After running the DC-OPF for a power grid, the maximum load-serving capacity for each bus is 

calculated by subtracting the load demand at each bus by the served load. Based on the shortfall amount 

and instance, operational reliability metrics, i.e., LOLH, LOLP, and EUE are calculated. 

4.2.1 Case Study on Reliability Assessment with Improved Offshore Wind Forecasts  

In this study, we apply the model to assess the performance of the improved offshore wind 

forecasting model, AIRU-WRF, alongside two benchmark models—NWP and PER. The analysis is based 

on the 2022 New York State generation fleet, using publicly available data from the NYISO Gold Book 

[11]. In 2022, the fleet included approximately 587 in-market generation units, with a total installed 

capacity of 36.30 GW and a peak demand of 30.50 GW. At that time, no offshore wind capacity was 

operational, and land-based wind contributed 1,739 MW. For future projections, we consider NYISO’s 

System and Resource Outlook (Policy Case S1 and S2) [12].  

 We align with New York State’s Climate Leadership and Community Protection Act (CLCPA), 

which targets 9,000 MW of offshore wind capacity by 2035. Our analysis uses the AIRU-WRF probabilistic 

forecasting model, benchmarked against NWP and PER models. While AIRU-WRF supports hour-ahead 

probabilistic forecasts, validation is limited to 2020 buoy data (E05N and E06). For 2030 and 2035 

projections, forecast error characteristics from 2020 are assumed to remain constant, with adjustments only 

to nameplate capacity. 

Table 8: Generation capacity in different years. 

Gen Info/Year 2022 2030 2035 
Bio 327 327 327 

GasCC 9686 9686 9686 
GasCT 3282 3282 3282 
GasST 7923 7923 7923 
Hydro 4437 4437 4437 

Nuclear 3343 3343 3343 
OffshoreWind  5764 8392 

OilCT 1549 1549 1549 
OilST 2825 2825 2825 

OnshoreWind 1739 9086 12612 
PSH 1167 1167 1167 
Solar 32 32 32 

Total Capacity 36310 49421 55575 
No of Gen Fleet 587 592 594 
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The generation mix for each scenario is detailed in Table 8. Due to data confidentiality, generator 

specific FOR, MTTF, and MTTR are not publicly available; we use aggregated reliability data from the 

2024 NREL Annual Technology Baseline (ATB) [13] and IEEE RTS [14]. To reduce computational 

complexity and maintain illustrative clarity, one representative week per season is sampled (Winter: Dec–

Feb; Spring: Mar–May; Summer: Jun–Aug; Fall: Sep–Nov). Results for 2030 are shown in Table 9, where 

seasonal peak loads reflect the highest hourly demand within each sampled week. Variations across rows 

highlight the performance differences among AIRU-WRF, NWP, and PER models, the primary focus of 

this analysis. 

 

Table 9: System reliability result comparison considering different offshore wind forecast model. 

Seasons Model LOLP (%) LOLH 
(hour/day) EUE (MWh) 

Winter 
AIRUWRF 0.609 0.146 71.35 

NWP 1.151 0.276 147.78 
PER 2.695 0.647 610.23 

Spring 
AIRUWRF 1.399 0.336 226.86 

NWP 1.876 0.450 349.77 
PER 7.487 1.797 2090.30 

Summer 
AIRUWRF 0.798 0.192 97.59 

NWP 1.022 0.245 116.20 
PER 0.174 0.042 21.35 

Fall 
AIRUWRF 21.880 5.251 9979.55 

NWP 23.913 5.739 10676.62 
PER 23.888 5.733 7425.80 

 

For the year 2030, we assume an offshore wind capacity of 5,764 MW and onshore wind capacity 

of 9,086 MW will be operating. Offshore wind exhibits a higher capacity factor (50–60%) compared to 

onshore wind (25–30%), contributing significantly to overall system adequacy. Table 9 presents seasonal 

reliability metrics under three offshore wind forecast models. The improved AIRU-WRF model 

consistently outperforms the benchmark models (NWP and PER) in reducing system risk. For instance, in 

Winter, AIRU-WRF achieves a LOLP of 0.609%, significantly lower than NWP (1.151%) and PER 

(2.695%). Similarly, AIRU-WRF achieves lower LOLH and EUE values, indicating fewer hours and lower 

energy shortfalls. These metrics can be extended to seasonal totals; for instance, a Winter LOLH of 0.146 

h/day under AIRU-WRF results in approximately 13.14 total hours of load loss over a 90-day season. 

Notably, the Fall season exhibits the poorest reliability across all models, with AIRU-WRF showing a 

LOLP of 21.88%, suggesting increased system vulnerability during this period despite higher offshore wind 

production. This highlights the seasonal variation in reliability outcomes, especially under high offshore 
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wind penetration scenarios. It is important to note that no additional traditional generation or storage 

resources are included in this analysis. 

Table 10: Reliability results comparison across different years for AIRU-WRF offshore wind. 

Seasons Year LOLP (%) LOLH (hour/day) EUE (MWh) 

Winter 
2022 0.001 0.000 0.05 
2030 0.609 0.146 71.35 
2035 1.940 0.466 453.27 

Spring 
2022 0.008 0.002 0.60 
2030 1.399 0.336 226.86 
2035 1.534 0.368 258.90 

Summer 
2022 0.076 0.018 8.73 
2030 0.798 0.192 97.59 
2035 5.441 1.306 1223.54 

Fall 
2022 0.024 0.006 1.72 
2030 21.880 5.251 9979.55 
2035 24.299 5.832 12455.82 

 

Reliability performance over different years is evaluated and summarized in Table 10. In 2022, the 

system exhibited its highest Loss of Load Probability (LOLP) during the summer, primarily due to the 

absence of offshore wind and the limited onshore wind capacity of 1,739 MW. Reliability in this case is 

largely influenced by forced outages, captured through MTTF and MTTR parameters. As offshore wind 

capacity expands, reliability outcomes shift notably. For instance, in Winter, LOLP increases from 0.001% 

in 2022 to 0.609% in 2030, and further to 1.94% in 2035, reflecting growing dependence on variable wind 

resources. A notable shift in seasonal reliability risk is observed, with Summer being the most vulnerable 

season in 2022, transitioning to Fall in 2030 and 2035. This shift is driven by increased offshore wind 

contributions during Fall, particularly at night and in the early morning hours. Although fall offers the 

highest average wind output, it also exhibits greater variability, resulting in higher system reliance and risk. 

As offshore wind capacity expands, this combination of high contribution and uncertainty significantly 

increases the likelihood of shortfall events, reflected in elevated LOLP values for fall in 2030 (21.88/%) 

and 2035 (24.30%).  

The reliability metrics are pre-risk mitigation actions taken by grid operators in real-time grid 

operations; such reliability risk mitigation could include increased operating reserve procurement, 

commitment of generation resources from in-market products, such as real-time commitment, or out of 

market products, such as Capacity Analysis Commitment Tool. 
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5 Conclusions and Potential Future Developments 
This report summarized the main developments, findings, and results of the NOWRDC project 

#133/192900, titled: “AIRU-WRF:  AI-powered Physics-based Tool for Offshore Wind Forecasting & Grid 

Integration.” In this project, we have developed and demonstrated a machine-learning-enabled forecasting 

technology, called AIRU-WRF, that is able to produce high-resolution operational forecasts of the offshore 

wind resource and generation at key offshore wind energy regions in the U.S. East Coast. When tested at 

multiple offshore locations where hub-height data is available, our experiments show that AIRU-WRF can 

improve the forecast accuracy by ~7-8% relative to base numerical weather prediction models, and up to 

~50-65% compared to purely data-driven models, across the full forecast horizon (from 1-hour to 24-hours 

ahead).  

Beyond forecast accuracy, the advantages of AIRU-WRF are demonstrated, including its ability to 

generate probabilistic characterization of the offshore wind resource and generation, its ability to generate 

high-resolution spatial wind field forecast maps for effective visualization and communication of the 

forecast outputs, and its ability to generate temporal trajectories/scenarios of hub-height winds and power 

production to support risk-aware operational decision-making at both the farm- and system-levels. 

Furthermore, we have extensively tested the accrued benefits of utilizing AIRU-WRF forecasts in grid 

integration, as measured by economic value and reliability in reserve quantification and grid support. 

Specifically, AIRU-WRF has been shown to reduce reserve procurement costs by up to $1.65-3.2M 

annually compared to best-in-class numerical weather products and drive significant improvements in 

reliability metrics including loss of load probability, loss of load hours, and expected unserved energy.  

This project raises a number of important avenues for further research, development, and application of 

AIRU-WRF. From a technological development perspective, a key enabler of AIRU-WRF is a dense 

network of synchronous and spatially distributed hub-height offshore wind data. With the scarcity and 

sparsity of these measurements, the team is undertaking research and development efforts to augment 

AIRU-WRF with generative AI capabilities to learn and generate synthetic hub-height data (using existing 

datasets) for extended streaks of time at “virtual locations.” This synthetic data can then be integrated, in 

addition to the actual measurements, to train the AIRU-WRF model for improved extrapolation over space 

and time. Furthermore, the increased volume of data will enable the project team to explore the merit of 

using emerging deep learning architectures, including graph- and transformer-based neural network 

models.  
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Extensive testing across multiple locations, time periods, and environmental settings is currently 

being pursued. Given our geographical focus on the U.S. East Coast, the team is currently exploring avenues 

to conduct similar testing and grid integration analysis for other system operators that may benefit from 

offshore wind forecasts to support future grid integration studies and scenario analysis (e.g., New Jersey, 

Virginia). Finally, another important development avenue is to design an adaptive graphical user interface 

to further broaden the reach and usability of AIRU-WRF by a vast portfolio of stakeholders, including 

offshore wind developers, system operators, as well as other ocean users.  
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6 Project Dissemination  

6.1 Publications and Patents:  

1. Ye, Feng, Joseph Brodie, Travis Miles, and Ahmed Aziz Ezzat. "AIRU-WRF: A physics-guided 

spatio-temporal wind forecasting model and its application to the US Mid Atlantic offshore wind energy 

areas." Renewable Energy 223 (2024): 119934. https://doi.org/10.1016/j.renene.2023.119934  

2. Ye, Feng, Joseph Brodie, Travis Miles, and Ahmed Aziz Ezzat. "Ultra-Short-Term Probabilistic 

Wind Forecasting: Can Numerical Weather Predictions Help?" In 2023 IEEE Power & Energy Society 

General Meeting (PESGM), pp. 1-5. IEEE, 2023. DOI: 10.1109/PESGM52003.2023.10252311 

3. Ye, Feng, Travis Miles, and Ahmed Aziz Ezzat. "Improved spatio-temporal offshore wind 

forecasting with coastal upwelling information." Applied Energy 380 (2025): 125010. 

https://doi.org/10.1016/j.apenergy.2024.125010  

4. Ye, Feng, Travis Miles, and Ahmed Aziz Ezzat. “Offshore Wind Energy Prediction Using Machine 

Learning with Multi-Resolution Inputs.” In Multimodal and Tensor Data Analytics for Industrial Systems 

Improvement, pp. 167-183. Cham: Springer International Publishing, 2024  

5. Ji, Jiaxiang, Ye, Feng, Travis Miles, and Ahmed Aziz Ezzat. “AIRU-WRF: Time-Dependent 

Ensembles for Day-ahead Spatio-Temporal Offshore Wind Energy Forecasting,” Under Review (2025)  

6. Walid, K.B., Ye, F., Ji, J., Miles, T., Aziz Ezzat, A., and Jiang, Y., “Economic and Reliability Value 

of Improved Offshore Wind Forecasting in Bulk Power Grid Operation,” Under Review (2025).   

7. “Techniques To Provide Improved Wind Input for Operating Offshore Wind Turbines,” U.S. 

Application 19/111. Inventors: Ahmed Aziz Ezzat, Feng Ye, Travis Miles, Joseph Brodie (supported by the 

Rutgers Office of Innovation Ventures) 

6.2 Dataset and Software:  

1. Aziz Ezzat, A., Ye, F., Ji, J., & Miles, T. (2025). AIRU-WRF: Spatial-Temporal Wind Datasets 

and Forecasts for Data-Science-Based Operational Offshore Wind Forecasting in the U.S. East Coast 

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.15642047  

2. AIRU-WRF Webpage [Updates, News, Software]: https://sites.rutgers.edu/azizezzat/airu-wrf-

data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/  

https://doi.org/10.1016/j.renene.2023.119934
https://doi.org/10.1109/PESGM52003.2023.10252311
https://doi.org/10.1016/j.apenergy.2024.125010
https://doi.org/10.5281/zenodo.15642047
https://sites.rutgers.edu/azizezzat/airu-wrf-data-science-based-offshore-wind-forecasting-model-for-the-u-s-east-coast/
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