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Notice   

This report was prepared by Dr. Guiju Song in the course of performing work contracted for and 

sponsored by the New York State Energy Research and Development Authority (hereafter 

“NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the 

State of New York, and reference to any specific product, service, process, or method does not constitute 

an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New 

York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for 

particular purpose or merchantability of any product, apparatus, or service, or the usefulness, 

completeness, or accuracy of any processes, methods, or other information contained, described, 

disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no 

representation that the use of any product, apparatus, process, method, or other information will not 

infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, 

or occurring in connection with, the use of information contained, described, disclosed, or referred to in 

this report. 

NYSERDA makes every effort to provide accurate information about copyright owners and related 

matters in the reports we publish. Contractors are responsible for determining and satisfying copyright or 

other use restrictions regarding the content of reports that they write, in compliance with NYSERDA’s 

policies and federal law. If you are the copyright owner and believe a NYSERDA report has not properly 

attributed your work to you or has used it without permission, please email print@nyserda.ny.gov 

Information contained in this document, such as web page addresses, are current at the time of 

publication. 

This material is based upon work supported by the U.S. Department of Energy's Office of Energy 

Efficiency and Renewable Energy (EERE) under the Wind Energy Technologies Office Award Number 

DE-EE0008390.  

This report was prepared as an account of work sponsored by an agency of the United States Government. 

Neither the United States Government nor any agency thereof, nor any of their employees, makes any 

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 

mailto:print@nyserda.ny.gov
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constitute or imply its endorsement, recommendation, or favoring by the United States Government or 

any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 

those of the United States Government or any agency thereof.  
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Executive Summary 

The objective of this project is to develop intelligent blade leading edge health estimation and prognostics 

models that use turbine operational variables in SCADA as the model inputs. Because of the data sparsity 

challenge faced in the offshore wind industry, blade health estimation and prognostics models have not 

been successfully applied to real world offshore turbines.  To build such models without a large amount 

of field data, we proposed to use a high-fidelity Bladed physics model of a 12MW Haliade X prototype 

turbine to generate simulation data. However, blade leading edge health state per say is not an input signal 

in Bladed model. Instead, blade roughness, caused by leading edge erosion is represented by airfoil blade 

section lift and drag aerodynamic coefficients and is a legitimate input to the Bladed model. Therefore, in 

this project, we aimed to develop the roughness estimation and prognostics models.  

This report summarized our accomplishments over the project period from April 2021 to October 2022 on 

the following four major tasks.  

Task 1 is about generating data using the physical model/simulator. In this task, we developed blade 

roughness profiles representing the blade leading edge health states, generated the dataset consisting of 

11,061 simulation runs and covering a wide range of operating and environmental conditions, and 

selected, using both univariate-based and multivariate-based qualitative and quantitative data analysis, 

approximate 20 turbine operation variables that exhibited monotonical trends as the roughness level 

changes.      

Task 2 is on building health index estimation (HIE) model. In this task, we studied the health index 

model building technologies by iterating with the variable selection process in Task 1 and developed four 

HIE models using different machine learning modeling techniques including extreme learning machine 

(ELM), Random Forest (RF), Linear Regression (LR), and LASSO. By assessing these different HIE 

models using the four broadly accepted performance metrics, i.e., MAE, RMSE, MAPE and R-squared, 

we have chosen the ELM model as our HIE model for the rest of our study.      

Task 3 is on calibrating HIE model using the SCADA data. In this task, our focus was on first preparing 

data from GE’s Haliade X prototype as well as defining model calibration strategies, and then calibrating 

our HIE model for real world adaption. One set of data from the prototype was collected in the first 

quarter of 2020 that represented different environment condition (Rotterdam of the Netherland) from the 

simulation. Another set of data from the prototype was collected in the first quarter of 2022 that 

represented different turbine operation from the design specification (12MW) because the Haliade X 
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prototype was operated at 14MW in that period. To deal with the environment difference, we developed 

and implemented a calibration strategy called “calibration via re-simulation” to tune the model for field 

implementation.  To deal with the operation difference, we developed and implemented a calibration 

strategy called “calibration via model updating” to tune the model for field implementation. By applying 

the “calibration via re-simulation” to account for environmental conditions, the model performance 

improved from 79% to 89%, which demonstrates the effectiveness of this procedure and the importance 

of adapting a standard model to different wind farm locations. By applying the “calibration via model 

updating” to account for both environment and turbine-to-turbine operational differences (i.e., going from 

12MW to 14MW), the model performance improved from 6% to 100%. This calibration method yielded 

much larger improvements in model adaptation to deal with individual turbine behaviors. 

Task 4 is on building RUL prediction model. In order to plan and schedule condition-based blade 

maintenance, knowing only the current blade roughness (HIE) is not sufficient. The CBM strategy 

requires predicting the future roughness growth. Our key focus in this task was to identify and develop a 

RUL model to forecast the future states of blade roughness. It is worth noting that the RUL forecast in 

this context is not about remaining useful life to a failure. This forecast specifically determines when the 

roughness level is likely to cross a predetermined threshold beyond which it is not advisable to operate 

the turbine without a maintenance action to avoid the AEP loss due to roughness increases.  

Challenges in applying the state-of-the-art prognostics models to our application include 1) lacking run-

to-failure and historical data; 2) uncertainties from the models, current state, and future state estimations. 

To tackle these challenges, we selected condition-based prognostics as our method. Condition-based 

prognostics allows explicit incorporation of various sources of uncertainties. Over the course of project 

execution, we studied a representative rain erosion lab test data, based on which a baseline RUL model 

was developed to characterize the increasing trend of roughness over time given a constant rain intensity. 

Combining the baseline RUL model with the precipitation data in Rotterdam where GE’s Haliade X 

prototype was installed, we simulated a set of data to represent how blade roughness may change over 

time in the real world. Using the generated data, we developed a roughness RUL model building process 

and performed RUL model validation to demonstrate the effectiveness of our proposed RUL modeling 

method.  

In summary, our research effort in this project has built and proved a framework for developing HIE and 

RUL models to realize CBM when historical data and failure data are limited. We believe this framework 

and its associated techniques are general and can be applied to other failure modes and turbine 

components of wind turbines.    
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1 Task 1: Generating data using physical 

model/simulator 

1.1 Completion simulator preparation  

In this milestone, we utilized GE’s offshore wind turbine physical model as the framework to simulate 

how different blade roughness states impact turbine behaviors and performance.  

The simulations of the wind turbine were run using Bladed, a commercial software code from DNV GL. 

Bladed is an aero-elastic, structural dynamics model based on blade element momentum (BEM) theory.   

Specifically, within Bladed, we simulated a Haliade X wind turbine. Table 1 is a summary of some main 

performance parameters of the Haliade X. For more information, please refer the following link. 

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine. 

Table 1. Haliade X descriptive and performance parameters 

Parameter Specification 

Rated output (MW) 12 

Rotor diameter (m) 220 

Total height (m) 248 

IEC wind class 1B 

Gross AEP (GWhr) ~68 

 

 

1.2 Simulation data generation 

A full factorial DOE was assembled to create a wide range of environmental and wind conditions that a 

real offshore wind turbine might be operated under. Depending on the number of condition variables and 

levels used, the number of points in the DOE can become very large and unwieldy. Thus, we came up 

with a suitable space to explore. Figure 1 below is a summary of the condition variables and levels used in 

the full factorial DOE for a Class 1B turbine. Combining all the variables and associated levels, a total of 

648 DOE points resulted from this full-factorial 7 parameter multi-level design. 

We used blade roughness levels to parameterize different levels of blade leading edge erosion. In our 

simulation, we ran 17 roughness levels ranging from 12.5% to 125%.  

 

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
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Figure 1. Parameters and levels used in initial DOE 

 

To simulate the impact of blade roughness on turbine behaviors, we further combined the full-factorial 

wind and environment condition design described above with 17 roughness state variations to run 11,016 

combinations in one large DOE design. That is showed in Figure 2. Each simulation run contains 15,000 

datapoints (corresponding to a 10 min time window) with 53 operational variables. The 53 operational 

variables include both turbine behavioral variables such as blade bending moments and turbine controller 

estimations such as pitch angle and so on so forth. 

Figure 2. Simulation file components 

 

1.3 Observability study completion 

Given this large number of simulations runs, the key questions to assess roughness observability were –  

(1) Do some/any of the turbine behavioral and controller estimation variables or derived features 

show discernable trends as blade roughness levels are changed under various conditions of DOE? 

(2) Are there specific DOE factors and their levels that affect the observability? Correspondingly can 

we identify a subset of conditions (e.g., wind speed ranges) under which a reliable trend in 

roughness levels can be identified for prognostics model development. 

In this effort, the team conducted a thorough observability study consisting of both univariate-based and 

multivariate-based qualitative and quantitative data analysis of the simulation data. 

After studying the average and individual behaviors of the output variables from the DOE simulation 

data, we identified about 20 variables that have exhibited more than 5% of changes when the roughness 

ranges from 35% to 125% [1]. We also found out that effect of roughness on blade operation variables is 

most evident at lower wind speeds than at higher wind speeds. The effect of roughness gets masked due 
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to abundance of power available at higher wind speeds. Another noteworthy observation is that that 

controller estimated variables such as aero torque and tip-speed-ratio etc. show high deviations for larger 

roughness, which matches our physical intuition since model-based controller estimation has no direct 

knowledge of roughness, its estimations are based on simulated conditions (as various DOE factors) 

which remain largely the same across all roughness levels.  

Since the only source of stochasticity in simulation is introduced by way of different seeds to simulate 

wind conditions, the outputs are largely deterministic. To assess robustness of this observability in 

presence of noise, we simulated noise on several measured variables (i.e., excluding controller estimated 

parameters). Based on inputs from domain experts random noise varying between 4-7% of the signal 

amplitude was added to 26 variables, which included torque, blade pitch angle, TSR, and 23 moment 

variables. From our study, we conclude that observability is preserved despite presence of noise on 

measurement data. 

  

1.4 Discussions of the observations and findings from Task 1 

In Task 1, we have completed the preparation of the data simulator and applied the simulator to generate 

the first batch of simulation data. The observability study determined the operational variables of wind 

turbines signifies observable difference at different blade roughness levels. Based on the data analysis 

results obtained, our findings are the following: 

1) The resulting changes of the operational variables (sensor measurements, control estimates and 

derived variables) of wind turbines are algorithmically observable as the blade roughness levels 

differ. 

2) Signature/features calculated from the raw variables have shown good observable trending as the 

blade roughness increases. Having such signatures with observable trending is of paramount 

importance for developing blade roughness estimation model in next milestone.  

3) The un-measurable factors, e.g., sensor noise and wind shear, of wind turbines have negligible 

effects on or insensitive to the observability results 
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2 Task 2: Building health index estimation (HIE) 

model 

2.1 Completion of feature selection for HIE model 

2.1.1 Model feature selection 

In previous section about observability study, we have determined approximately 20 turbine operational 

variables present significant changes when the roughness level changes. To build a HIE model to estimate 

the roughness level, we further performed feature selection to identify a subset of variables (features) that 

can potentially optimize the model performance while considering the data availability and accessibility 

in field wind farm operations.  

Feature selection or variable selection has been studied in many applications and the corresponding 

methodologies are chosen based on the problem to be solved. In our case, the HIE model is to 

characterize the relationship between the roughness level and a number of variables, therefore we would 

like to identify a transfer function to describe the relationship and the corresponding set of variables that 

are to be included in the model. We mainly applied three analytics methods in our feature selection task.  

The first approach is “Forward stepwise selection in multiple linear regression”. A multiple linear 

regression model assumes the linear relationship between 𝑦 and each 𝑥 variable. For each observation 𝑖 

(𝑖 = 1, 2, … , 𝑛): 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 + 𝜀𝑖,  

where 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑘) are the coefficients and 𝜀𝑖 is the error term. The estimated coefficients 𝛽
̂

=

(𝛽̂0, 𝛽̂1, … , 𝛽̂𝑘) are obtained by 

𝛽
̂

= argmin
𝛽⃗⃗⃗

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 )2𝑛

𝑖=1 . 

The forward stepwise selection algorithm is performed to identify the set of 𝑥 variables to be included in 

the multiple linear regression model, which is described in Table 2. 
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Table 2. Forward stepwise selection algorithm. 

Step 1: Start with the initial model without any 𝒙 variable (𝒚𝒊 = 𝜷𝟎 + 𝜺𝒊) and evaluate its Bayesian 

Information Criterion (BIC). 

Step 2: Add one more 𝒙 variable at a time to the previous model (here the initial model) and 

evaluate its BIC. The resulting model is the one with the largest BIC reduction if any. 

Step 3: Repeat Step 2 until no more 𝒙 variable can be added to the previous model to reduce the 

BIC and return the final model with the selected 𝒙 variables. 

 

As an alternative, the least absolute shrinkage and selection operator (LASSO) method regularizes the 

coefficient estimates, or shrinks the coefficient estimates towards zero. As before, for each observation 𝑖 

(𝑖 = 1, 2, … , 𝑛): 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2 𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 + 𝜀𝑖,  

where 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑘) are the coefficients and 𝜀𝑖 is the error term. The LASSO coefficient estimates 

𝛽
̂

= (𝛽̂0, 𝛽̂1, … , 𝛽̂𝑘) are obtained by 

𝛽
̂

= argmin
𝛽⃗⃗⃗

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 )2𝑛

𝑖=1 + 𝑙 ∑ |𝛽𝑗|}𝑘
𝑗=1 . 

The way the coefficients are estimated forces some of the coefficient estimates to be exactly equal to zero 

when the tuning parameter 𝑙 increases, hence variable selection is performed. The estimate of 𝑙 is 

obtained using the cross-validation technique. 

Our third method is Random forests (RF), which is a tree-based ensemble method that aiming to reduce 

the model variance. A regression tree model doesn’t assume the linear relationship between 𝑦 and 𝑥 

variables. Instead, the high dimensional space of 𝑥 variables is segmented into a number of small regions 

each corresponding to a subset of the data. Specifically, a binary splitting is performed at each step using 

one 𝑥 variable which leads to the largest error reduction at that step. The binary splitting starts at the top 

of the tree and successively splits the 𝑥 variable space each creating two new branches further down on 

the tree. 
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A RF model averages a number of noisy but approximately unbiased regression tree models. The RF 

algorithm is described in Table 3.  

Table 3: RF algorithm. 

Step 1: Draw a bootstrap sample from the training data. 

Step 2: Grow a regression tree based on the bootstrap sample data, during which at each node a number 

of randomly selected variables are selected to split the data based on a specified criterion. 

Step 3: Repeat Step 1-2 a number of times so that multiple regression tree models are developed. 

Step 4: All the regression trees are ensembled as a “forest” for the model inference. 

 

There exist various approaches to evaluating the importance or contribution of each 𝑥 variable during the 

RF building process. Here we consider two measures of variable importance. 

One measure of variable importance is the permutation importance. Notice that each individual tree in the 

RF is built based on a bootstrap sample of the original data. The data that is not included in the bootstrap 

sample is called out-of-bag (OOB) data and it can be used for evaluating prediction performance. 

Permutation importance permutes each 𝑥 variable’s OOB data and compares the resulting OOB 

prediction error to the original OOB prediction error. The larger the difference in the OOB prediction 

error, the more important the variable is for the RF model. 

Another measure of variable importance is based on a tree-based concept called minimal depth. Notice 

that variables that split close to the root node of the tree have a strong effect on prediction accuracy and 

variables that split deeper in the tree have less impact. Minimal depth measures the distance of a variable 

relative to the root of the tree, and it can be used to assess the prediction impact or importance of the 

variable. Comparing the minimal depth of each 𝑥 variable to a threshold derived from the minimal depth 

distribution filters some noisy variables and therefore can be used for variable selection. 

2.1.2 Model feature selection observations, findings, and recommendations 

The observability study conducted in Task 1 shows that it can be difficult to distinguish roughness levels 

by using signals at a relatively low wind speed region. Therefore, we only use the data with the 

normalized wind speed greater than 0.2. Also, some signals at a specific wind speed region can be more 

likely to distinguish roughness levels than other regions. In this section, we consider two scenarios in 
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which the normalized wind speed is greater than 0.2, and the normalized wind speed is between 0.4 and 

0.5, respectively. 

2.1.2.1 Normalized wind speed greater than 0.2 

From the observability study, some signals can interact with air density and TI to distinguish roughness 

levels. In the multiple linear regression and LASSO, both air density and TI are always included in the 

model during variable selection. The variable selection results using the methods illustrated in the 

previous sections are summarized in Table 4, in which the selected variables are marked as “x”. 

Table 4: Variable selection comparison. 

Variable 
Forward 
stepwise 

LASSO 
RF  

minimal depth 
Air_Density x x x 

TI x x x 

Wind_speed x x x 

LSS_torque 
 

x x 

Rotor_speed x x x 

Generator_speed x 
 

x 

Generator_torque 
 

x x 

Generator_air_gap_torque 
 

x x 

Electrical_power 
 

x x 

Reactive_power x x x 

Blade_pitch_angle x 
 

x 

Hub_wind_direction x x x 

Rotor_longitudinal_wind_speed x 
 

x 

Rotor_wind_direction x 
 

x 

Blade_Hub_bending moment 1 x 
 

x 

Blade_Hub_bending moment 2 x x x 

Yaw_bearing_bending moment 1 
 

x x 

Yaw_bearing_bending moment 2 x x x 

Nacelle_acceleration 1 x x x 

Nacelle_acceleration 2 
 

x x 

Blade_root_bending moment 1 x x x 

Blade_root_bending moment 2 x x x 

Blade_root_bending moment 3 x x x 

Angle of attack 1 x x x 

Angle of attack 2 x x x 

Rotating_hub_bending moment 1 
   

Rotating_hub_bending moment 2 x x x 

Rotating_hub_bending moment 3 x x x 

Stationary_hub_bending moment 1 
 

x 
 

Stationary_hub_bending moment 2 x 
  

Stationary_hub_bending moment 3 x x 
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Tower_bending moment 11 
 

x 
 

Tower_bending moment 12 x x x 

Tower_bending moment 21 x x x 

Tower_bending moment 22 x x 
 

Torque x 
 

x 

Estimated TSR x x x 

Estimated Power x x 
 

Estimated Wind Speed  x x x 

Estimated Wind Speed x 
 

x 
 

 

2.1.2.2 Normalized wind speed between 0.4 and 0.5 

The variable selection results using the methods illustrated in the previous sections are summarized in 

Table 5, in which the selected variables are marked as “x”.  

Table 5: Variable selection comparison for selected wind speed range. 

Variable 
Forward 
stepwise 

LASSO 
RF 

minimal depth 

Air_Density x x x 

TI x x x 

Wind_speed x x  

LSS_torque  x x 

Rotor_speed  x x 

Generator_speed    

Generator_torque    

Generator_air_gap_torque    

Electrical_power  x  

Reactive_power x x  

Blade_pitch_angle x x x 

Hub_wind_direction x x x 

Rotor_longitudinal_wind_speed x   

Rotor_wind_direction x x  

Blade_Hub_bending moment 1 x x  

Blade_Hub_bending moment 2 x x  

Yaw_bearing_bending moment 1  x x 

Yaw_bearing_bending moment 2 x   

Nacelle_acceleration 1  x  

Nacelle_acceleration 2  x  

Blade_1_root_bending moment 1 x x  

Blade_1_root_bending moment 2 x x  

Blade_1_root_bending moment 3 x x  

Angle of attack 1 x x x 

Angle of attack 2 x x  

Rotating_hub_bending moment 1    

Rotating_hub_bending moment 2 x x x 

Rotating_hub_bending moment 3  x  
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Stationary_hub_bending moment 1    

Stationary_hub_bending moment 2 x x  

Stationary_hub_bending moment 3 x x  

Tower_bending moment 11 x x  

Tower_bending moment 12    

Tower_bending moment 21 x x  

Tower_bending moment 22 x   

Torque x   

Estimated TSR x  x 

Estimated Power  x  

Estimated Wind Speed  x x x 

Estimated Rptor Speed x x  

 

2.2 Health index estimation (HIE) modeling 

A health state estimation or health index estimation (HIE) model takes turbine’s operational measurements 

(e.g., SCADA data and control estimates) at a given time as the inputs and outputs the blade roughness 

level, a health index, at that time.  The estimated blade roughness levels or health indices are used not only 

for accurately monitoring the current condition of the blade, but also for propagating the condition state to 

future operating state for remaining useful life (RUL) estimation, which ultimately enables for effectively 

and confidently exercising a CBM strategy on offshore wind turbine blades.  

2.2.1 HIE modeling strategies and techniques 

The goal of HIE modeling is to develop a ML-based predictive model that estimates the roughness status 

or levels of a wind turbine based on its operational measurements (sensor measurements and control 

estimates). A wind turbine is a complex, dynamic system that operated in stochastic conditions; and thus 

the operational measurements collected from the turbine system are certainly affected by many contributing 

factors, including wind speed, wind directions, air density, etc., in addition to the blade roughness changes. 

The challenges associated with blade roughness estimation modeling come from the fact that not all these 

contributing factors are measured and available in real-world wind turbine applications. Hence, minimizing 

the effect of these non-measurable factors to blade roughness status becomes the key to the success of our 

HIE modeling. Our observability study, sensitivity analysis completed in Phase I and variable/feature 

selection are a part of our efforts towards addressing the challenges and have provided us an initial set of 

important variables. For HIE modeling in this study, we start our HIE model inputs with the smallest 

number of variables that are most widely available in real-world turbines, and more variables are added as 

the HIE model inputs only when these added variables significantly improve the model prediction 

performance. 
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From machine learning perspectives, blade roughness or health index estimation (HIE) is a regression 

problem, where the independent variables or inputs are operational measurements, e.g., measured wind 

speed and measured pitch angle, and the dependent (or target) variable is simply the blade roughness level 

or health index. In literature there are many regression methods available, ranging from traditional statistical 

approaches, e.g., linear regression, to most advanced machine learning methods. For our HIE modeling we 

adopted the Extreme Learning Machine (ELM) [1] as the primary HIE modeling technique, due to its unique 

advantages over other modeling techniques (see below). We also explored other machine learning models, 

e.g., random forest, linear regression, as a part of our compassion study. 

Extreme learning machine (ELM) is a special type of feed-forward neural networks [2]. ELM and random 

vector functional links (RVFL) and others forma special group of neural networks called randomized neural 

networks. In traditional feed-forward neural networks, network training, i.e., finding all connection weights 

and bias, is performed through an iterative optimization. ELM, on the other hand, follows a non-iterative 

learning approach, that is, the connections between input and hidden neurons are randomly generated and 

fixed; and training an ELM becomes finding connections between hidden and output neurons only, which 

is simply a linear least squares problem that can be solved analytically. Because of such special design of 

the network, ELM training is significantly fast. Moreover, ELM has approved to be efficient and effective 

for many applications (both classification and regression) [3]. 

Consider a dataset, {(𝒙𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , 𝒙𝒊 ∈ ℝ𝒅, 𝑦𝑖 ∈ ℝ𝑘  , and a network with L hidden neurons. Then the output 

of the network is expressed as: 

𝒇(𝒙) = ∑ 𝜷𝒊ℎ𝑖(𝒙) = 𝒉(𝒙)𝜷

𝐿

𝑖=1

                                                                 (1) 

Where ℎ𝑖(𝒙) = 𝐺(𝒘𝑖 , 𝑏𝑖 , 𝒙),  𝒘𝑖 ∈ ℜ𝑑 , 𝑏𝑖 ∈ ℜ1, is the output of 𝑖𝑡ℎ hidden neuron with respect to the input 

x; 𝐺(𝑤, 𝑏, 𝑥) is a nonlinear piecewise continuous function satisfying ELM universal approximation 

capability theorems [5];  𝜷𝑖  is the output weight vector between 𝑖𝑡ℎ hidden neuron to the 𝑘 ≥ 1 output 

nodes. 𝒉(𝒙) = [ℎ1(𝒙), … , ℎ𝐿(𝒙)]  is a random feature map mapping the data from d-dimensional input 

space to the L-dimensional random feature space (or the ELM feature space). 

For the equality optimization constraints-based ELM, the unknown parameter,   , is found through the 

following optimization: 



2016 NYSERDA Marketing’s Template for Reports 

 

21 
 

Minimize: 𝑳𝑝 =
1

2
‖𝜷‖2 +

1

2
𝐶 ∑ ‖𝝃𝑖‖2𝑁

𝑖=1  

Subject to: 𝒉(𝒙𝑖)𝜷 = 𝒚𝑖
𝑇 − 𝝃𝑖

𝑇, 𝑖 = 1, … , 𝑁                                           (2) 

Where 𝝃𝑖 = [𝜉𝑖,1, … , 𝜉𝑖,𝑘]𝑇 is the training error vector of the k output nodes with respect to the training 

sample 𝒙𝑖 and the constant C controls the tradeoff between the output weights and the training error. 

The equivalent dual optimization objective function of Eq. 2 is: 

𝑳𝑑 =
1

2
‖𝜷‖2 +

1

2
𝐶 ∑ ‖𝝃𝑖‖2 − ∑ ∑ 𝛼𝑖,𝑗(𝒉(𝒙𝒊)𝜷𝒋 − 𝑦𝑖,𝑗 + 𝜉𝑖,𝑗)𝑘

𝑗=1
𝑁
𝑖=1

𝑁
𝑖=1                           (3) 

Based on the Karush-Kuhn-Tucker (KKT) condition, we can have the solutions for the ELM output function 

𝒇(𝒙) for non-kernel and kernel cases, respectively, as follows. 

Non-kernel case 

𝒇(𝒙) = 𝒉(𝒙)𝜷 = 𝒉(𝒙)𝑯𝑇 (
𝑰

𝑪
+ 𝑯𝑯𝑻)

−1

𝒀                                            (4) 

where H is the hidden layer output matrix. 

𝑯 = [
𝒉(𝒙𝟏)

⋮
𝒉(𝒙𝑵)

] = [
ℎ1(𝒙1) … ℎ𝐿(𝒙1)

⋮ ⋮ ⋮
ℎ1(𝒙𝑁) … ℎ𝐿(𝒙𝑁)

]                                                (5) 

Kernel case 

𝒇(𝒙) = 𝒉(𝒙)𝑯𝑇 (
𝑰

𝐶
+ 𝑯𝑯𝑻)

−1

𝒀 = [
𝑲(𝒙, 𝒙𝟏)

⋮
𝑲(𝒙, 𝒙𝑵)

]

𝑻

(
𝑰

𝐶
+ 𝛀𝑬𝑳𝑴)

−𝟏

𝒀                     (6) 

Where 𝛀𝑬𝑳𝑴 = 𝑯𝑯𝑻, 𝑎𝑛𝑑 Ω𝐸𝐿𝑀  𝑖,𝑗 = 𝒉(𝒙𝒊) ⋅ 𝒉(𝒙𝒋) = 𝑲(𝒙𝒊, 𝒙𝒋).  



2016 NYSERDA Marketing’s Template for Reports 

 

22 
 

2.2.2 Model performance metrics and evaluation methods 

The performance of a regression model is often measured by prediction errors, difference between the 

predicted and the true target values. For HIE modeling, in this report we utilize four different performance 

metrics, for assessing our HIE models’ performance. They are the root mean squared error (RMSE), the 

mean absolute error (MAE), the mean absolute percentage error (MAPE), and the R-square values. Given 

N data samples, the target and the predicted values are yi  and 𝑦̂𝑖, respectively, the four error metrics are 

defined as follows. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1     (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1     (8) 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

(𝑦𝑖−𝑦̂𝑖)

𝑦𝑖
|

2
𝑁
𝑖=1     (9) 

𝑅2 =  1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

     (10) 

In terms of performance evaluation method, we adopt the 60/40 hold-out cross-validation method. That is, 

the entire data is randomly shuffled and then split into two disjoint subsets, 60% and 40%, while the 60% 

of it is used for training the HIE model and the rest of data (40%) is used for testing the model’s 

generalization capability. We use the performance metrics on the testing dataset for model validation and 

model performance comparison.  

2.2.3 HIE modeling results 

2.2.3.1 HIE model details 

Model inputs.  Based on the sensor measurements availability of a typical real-world turbine application, 

we have chosen seven variables as shown in Table 6 as our HIE model inputs. These seven variables are 

very basic measurements that are available for almost all wind turbine operations/applications. These seven 

variables are also a subset of variables selected in our variable selection study conducted in the previous 

quarter.  
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Table 6: Input variables of our HIE model.  

Model Inputs Variable Names 

X1 Cup_anemometer_wind_speed 

X2 TI 

X3 Air density 

X4 Blade pitch angle 

X5 Controller estimated wind speed 

X6 Blade moments 

X7 Tip-speed ratio 

 

And thus our HIE model is then defined as: 

𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 = 𝑓(𝑋1, 𝑋2, … 𝑋7) 

where, f is the ELM model to be built.  

Input variable scaling/normalization. To ensure a proper training and a good performance of our HIE 

model, each of the input variables is scaled to [0, 1] using range scaling. 

Model hyperparameters. The ELM model has two hyperparameters, the number of hidden neurons and the 

regularization factor C (see Eq. 2). These two hyperparameters are often determined via cross-validation. 

In this study, the final values of these two hyperparameters are 300 and 2^16, respectively. 

2.2.3.2 Model performance summary 

We used 60% of the data samples for training and the remaining 40% data samples for testing our ELM 

model. Figure 3 shows the scatter plots between the true and the predicted rough levels for both the training 

and the testing set, respectively. The distributions (histograms) of the predictions for each of the six 

roughness levels are shown in Figure 4. From these figures one can see that the ELM model predicts the 

blade roughness levels reasonably well, especially at the higher levels, e.g., 50% and above, of blade 

roughness. One can also see that the ELM model has some difficulty differentiating clean (12.5% 

roughness) and small (35%) roughness level, which makes physical sense and is well understandable. 

To quantitatively assess the ELM model performance, we calculated the four performance metrics defined 

in Section Model performance metrics and evaluation methods2.2.2. For the training dataset, the MAE, the 

RMSE, the MAPE and the R-squared were 3.82, 4.86, 15.06, and 0.98, respectively, while for the testing 

dataset, they were 3.88, 4.89, 13.72 and 0.98, respectively.  
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We have also explored other different modeling techniques for our HIE model. Since in the earlier efforts 

for feature selection (M2.1) we have utilized three modeling techniques, e.g., random forest (RF), LASSO 

and linear regression (LR), for variable selection. We thus also built three additional HIE models using 

these three modeling techniques.  

Table 7 shows the comparison of prediction performance between our ELM and the three additional models, 

in terms of the four performance metrics. From the table one can clearly see the ELM model outperformed 

other models significantly, which further validates the superiority of our ELM-based HIE model for 

predicting blade roughness levels. 
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Figure 3: Scatter plot between the true and the predicted roughness levels. 

Figure 4: Histograms of the predicted roughness levels. 
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Table 7: HIE model performance comparison. 

Perf. 
metrics 

Training Testing 

ELM RF LASSO LR ELM RF LASSO LR 

MAE 3.82 3.19 7.52 7.41 3.88 8.55 7.56 7.63 

RMSE 4.86 4.11 9.53 9.27 4.89 11.29 9.49 9.49 

MAPE 15.06 11.33 25.97 24.25 13.72 31.8 26.47 25.06 

R-squared 0.98 0.99 0.94 0.94 0.98 0.92 0.94 0.94 
 

2.3 Discussions of the observations and findings from Task 2 

In Task 2, our focus has been on the HIE modeling. We developed our blade roughness estimation model 

based on the simulated data. Realizing that many factors (or contributing factors) affect blade roughness 

and that not all these contributing factors are measurable, during our estimation model building, we made 

a great effort on minimizing the effect of these non-measurable factors by limiting the number of input 

variables to the smallest possible and ensuring that these input variables are widely available in typical real-

world wind turbine operations. Based on the simulation data, we have demonstrated that our HIE model 

developed performed reasonably well in terms of the four-performance metrics and our HIE model 

developed significantly outperformed other estimation models we considered.  

 

 

 

 

 

 

 

 

 

 



2016 NYSERDA Marketing’s Template for Reports 

 

27 
 

3 Task 3: Calibrating HIE model using the SCADA 

data 

3.1 Completion of filed data preparation and calibration strategy 

3.1.1 Motivation for calibration  

The early deliverables reported that the simulation data was generated based on the specification of wind 

turbine design parameters, controller configuration, and environmental inputs. While a wide range of 

simulation scenarios can be generated for model building, we expect unseen conditions to appear in 

fielded systems, which may not necessarily be covered by the range of inputs in simulation data used for 

model training. Therefore, the relationship between the blade roughness and other variables can be 

different if any of these inputs change beyond the pre-defined range. In general, if any input to the 

simulation based on which an HIE model is built is significantly different from what is observed in the 

field, a model calibration process may be needed to retune the HIE model so that it better predicts blade 

roughness state in the field.  

For instance, to validate the HIE model developed using simulation data against the field test, we will 

apply the developed HIE model to the field data and study how well the model performs.  Field 

conditions are more dynamic and complex than those simulated through a model. This often results in a 

poorer overall performance on field data as compared to validation studies based on simulation data 

alone. In such cases, a model calibration step is needed to calibrate and improve the HIE model so that it 

can be adapted to the field data for an accurate estimation and monitoring of the blade roughness level in 

real time. As a specific example, in a new DOE simulation design, we obtained wind turbine design 

parameters and control configurations from the fielded turbine and leveraged these same inputs in the 

simulation to mimic wind turbine deployment as closely as possible. This allows us to isolate the effects 

of changing environmental inputs and hence characterize potential differences between the simulation and 

the fielded system due to environmental factors alone. 

Since the installation in 2019, the Haliade X turbine has been operated to generate different rated powers 

(12MW, 13MW and 14MW). Key control variable such as blade pitch angle varies significantly as a 

result. A calibration strategy for this scenario needs to be developed to deal with both environment and 

operation differences.  
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3.1.2 Model calibration strategy 

In both calibration scenarios, we follow three steps showed in Figure 5 to show that an HIE model can be 

adapted to the field data by (Step 1) assessing the overlap between the simulation input space and actual 

field conditions, (Step 2a) expanding the simulation input space as needed, or (Step2b) incorporating 

turbine control specific variables into model updating, and (Step 3) updating and validating the HIE 

model using additional simulation data accordingly in Scenario 1 or using additional field data in 

Scenario 2. 

Figure 5. Calibration steps. 

 

 

3.2 Completion of HIE model calibration and validation 

3.2.1 Apply model calibration to field data  

The calibration strategy for Scenario 1 was proposed based upon the data analysis insights obtained from 

GE’s Haliade X offshore wind turbine prototype operated at 12MW capacity in the first quarter of 2020. 

Specifically, this so called “calibration via re-simulation” strategy deals with different environmental 

condition between Haliade X prototype in Rotterdam and the simulation.   

We later got access to a more recent dataset from Haliade X when it was operated at 14MW rated power 

in January of 2022. We named this case as Scenario 2. The data analysis insights from the new dataset 
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necessitated a new calibration strategy called “calibration via model updating”. Specifically, this strategy 

provides a calibration process for turbine operation differences, where it is necessary to exercise 

simulation to generate more data and also update model.  

Details about Scenario 1 - the “calibration via re-simulation” are described in Section 3.2.2 and details 

about Scenario 2 are presented in Section 3.2.3. 

3.2.2 Scenario 1 – “Calibration via re-simulation” 

In this section, we first describe the field data analysis that prompts the calibration Scenario 1, where we 

observed previously unseen environmental conditions that the DOE simulation didn’t include, or the 

included data points were sparse. We then implement our calibration method and show the improved 

model performance through field data validation with GE’s Haliade X operated at 12MW capacity. Our 

simulation was setup with design settings for 12MW operation, and we expect operating environment 

characteristics to be the key factor for any differences. Specifically, we need to make sure the range of 

environmental factors used in simulation DOE matches the range observed in the field. 

3.2.2.1 Assessing overlap between field conditions and simulation input space 

As Step 1 in the model calibration strategy, understanding the real-world data and individual turbine 

behavior is critical to adapt the HIE model built with simulation data to real-world so the model can be 

eventually implementable on real turbines and trusted for estimating and predicting turbine health 

conditions. We received help from GE’s Offshore business team in accessing the field data from the 

Haliade-X prototype. A set of field data was collected from Haliade-X prototype that was operated at the 

rated power of 12MW between February 2020 and April 2020. Figure 6 summarizes and compares the air 

density, TI, and shear for the DOE [4] simulations and the field data. As can be seen the two datasets 

cover different ranges of the three environmental parameters. Specifically, for instance, a larger spread is 

seen in air density around 1.25. TI also shows a larger spread but also includes ranges that are not within 

simulated TI ranges. Likewise, shear values in field data span a much wider range than what was 

originally simulated. As the relationship between the blade roughness and other variables is expected to 

be non-linearly different under different environmental conditions, we cannot expect a model trained on 

narrower range to perform reasonably on full range of field conditions. Therefore, there was a need to 

calibrate the model by adjusting the simulation input space and cover the field conditions that were not 

previously included in the DOE simulation data. 
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Figure 6. Environmental condition comparison for DOE and 12MW field data. 

 

3.2.2.2 Calibration process – “calibration via re-simulation” 

For Scenario 1, where the simulation and the field data (12MW) have different environmental conditions, 

e.g., TI, air density and shear, we employ “calibration via re-simulation” approach shown in Figure 7, that 

is, simply to “customize” the design space of the DOE simulation to better match the environmental 

conditions of the field data (12MW). Then the HIE model is re-trained based on the simulation data with 

the customized design space. We demonstrate the effectiveness of our “calibration via re-simulation” by 

comparing the estimated roughness accuracies on the field data (12MW) between the two HIE models, 

HIE model built on the original simulation data (DOE) and the HIE model built on the simulation data 

with the customized design space, respectively. Note that the two HIE models have identical model 

structure, model hyperparameters, and input variables. 
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Figure 7 Calibration via re-simulation. 

 

3.2.2.3 Simulation space expansion 

To adjust the simulation input space (Step 2a) to better match the field conditions, we generated another 

DOE simulation data (DOE3a) with a full factorial design. A 3D view of all three environmental 

conditions for the new DOE(DOE3a) and previous DOE(DOE3) is illustrated in Figure 8. The 

comparison of air density, TI, and shear for the original DOE, and updated DOE and field data is 
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displayed in Figure 9, which shows that the environmental conditions for the new simulation data are 

more consistent with those of the field data from the Haliade X prototype 

Figure 8. 3D view of the environmental condition for DOE and DOE3a. 

 

Figure 9. Environmental condition comparison for DOE, DOE3a and 12MW field data. 

 

3.2.2.4 HIE model adaption to the 12MW field data 

As Step 3 in Scenario 1, the newly simulated dataset DOE3a and the 12MW field data from the Haliade X 
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prototype are now incorporated in the model calibration.  

To use the updated DOE3a data to develop an HIE model (Step 3) that can be adapted to the field data, 

we will need to assess the availability and associated data quality for the variables available from the 

field. It was determined that the available field data included only a subset of the variables compared to 

the full set that was generated in our simulation.  

We developed the HIE model based on the DOE3a data using the Extreme Learning Machine (ELM) 

technique as discussed in Task 2. Figure 10 shows the scatter plots between the true and the predicted 

roughness levels for both the training and the testing set, respectively. The distributions (histograms) of 

the predictions for each of the six roughness levels are shown in Figure 11. Both figures show that the 

ELM model predicts the blade roughness levels reasonably well. The model performance metrics are also 

shown in  

 

Table 8. 

 

 

Figure 10. Scatter plot between the true and the predicted roughness levels on simulated data. 
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Figure 11. Histograms of the predicted roughness levels (for 12MW simulation data). 

 

 

 

Table 8. HIE model performance on simulated data (train and test). 

 MAE RMSE MAPE R-squared 

Training 1.935 2.500 7.110 0.996 

Testing 2.751 4.027 10.386 0.990 

 

Next for validation, the above developed HIE model was applied to the 12MW field data as is and model 

performance was assessed. As the field data was collected from Haliade-X only a few months after its 

installation, we assume that the actual blade roughness status is clean.  

As a baseline, Figure 12 and Table 9 show the model prediction results for the 348 field data points (10 

minute timeseries for each point) using the HIE model built upon the DOE data, in which 275 (79%) data 

points are classified as clean (less than 50% rough), but a large number of points (21%) were predicted by 

the model to be very rough (greater than 50% rough), which are likely candidates for false positives if our 

assumption of clean blade holds. To demonstrate calibration strategy through input space coverage 
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assessment and subsequently simulation space expansion we further improve the model with additional 

data from DOE3a. As shown in Figure 13 and Table 9, 308 data points are now predicted as “clean” (50% 

or less rough), and the prediction accuracy has improved to 89%.  

Figure 12. Initial model performance on field data using DOE (for 12MW). 

 

Table 9. Initial model performance on field data using DOE (for 12MW). 

Accurate prediction Inaccurate prediction 

79% 21% 

 

This further verifies our model calibration strategy for Scenario 1 that adjusting simulation input space 

can improve the model adaption performance. In an operational setting, data from specific site can be 

analyzed and used for generating additional simulation data from new conditions to adapt/calibrate the 

HIE model to new conditions. 



2016 NYSERDA Marketing’s Template for Reports 

 

36 
 

Figure 13. Model adaption performance using DOE3a (for 12MW) on field data. 

 

Table 10. Model adaption performance using DOE3a on field data for 12MW operation. 

Accurate prediction Inaccurate prediction 

89% 11% 

 

3.2.3 Scenario 2 – Calibration via model updating 

In this section, we describe the field data analysis that manifests calibration scenario 2, where we not only 

observed unseen environmental conditions, but also the control and operation variables that the DOE 

simulation didn’t include. This case was named as Scenario 2. We then implement our calibration 

method, “Calibration via model updating”, and show the improved model performance through field data 

validation with GE’s Haliade X operated at a higher 14MW rated power. 

3.2.3.1 Assessing field conditions and turbine control variables 

A second set of field data was recently collected from the Haliade-X prototype that was operated at a 

higher rated power of 14MW in January 2022. Figure 12 summarizes all the available variables, in which 

the ranges of some turbine controller related variables are very different from those in the 12MW field 

data due to the different turbine operational mode.  
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3.2.3.2 Calibration process - “calibration via model updating” 

The data comparison in the previous subsection clearly shows significant environmental condition 

differences between the simulation (DOE3a) and the field data (14MW). Consequently, the HIE model 

trained on the simulation data will not work well for estimating roughness levels, when applied to the 

field data, since machine learning models inherently are not well generalizable to out-of-distribution 

samples (note that the 14MW field data has mostly out-of-distribution samples).  To ensure our HIE 

model works on both the simulation and the field data as well, we perform model calibration via model 

updating as showed in Figure 14. Specifically, we update our HIE model with a small number of samples 

randomly drawn from the field data. The effectiveness of this approach is presented next by comparing 

the estimated roughness accuracies on the field data between the two HIE models, HIE model built on the 

simulation data only (without calibration) and the HIE model built on both simulation and sampled field 

data (with calibration), respectively. Note that the two HIE models have identical model structure, model 

hyperparameters, and input variables. 

Figure 14. Calibration via model updating. 

 

3.2.3.3 HIE model updating to the 14MW field data 

We first developed an HIE model using the DOE3a data and the variables that are available in both the 

DOE3a and 14MW field data. The developed HIE model was then applied to the 14MW field data. The 

model prediction results are shown in Figure 15 and Table 11, in which only 13 (6%) out of 222 data 

points are correctly classified as clean (less than 50% rough). 
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Figure 15. Model adaption using DOE3a performance on 14MW field data. 

 

Table 11. Model adaption performance using DOE3a (for 14MW field data). 

Accurate prediction Inaccurate prediction 

6% 94% 

 

To calibrate the HIE model for better model adaption in this scenario, we combined the DOE3a 

simulation data with a subset of the 14MW field data for model training. With only 50 samples from the 

14MW field data selected, an HIE model was developed with good training performance as shown in 

Figure 16, Figure 17 and Table 12. 
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Figure 16. Scatter plot between the true and the predicted roughness levels on simulation data (for 
14MW). 

 

Figure 17. Histograms of the predicted roughness levels (for 14MW) on simulated data. 

 

Table 12. HIE model performance metrics (for 14MW) on simulation data. 

 MAE RMSE MAPE R-squared 

Training 3.514 4.516 14.726 0.986 

Testing 4.179 5.205 17.408 0.982 
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The above developed HIE model is then applied to the 14MW field data, and the model prediction results 

are shown in Figure 18 and Table 13 in which all the 222 (100%) data points are correctly classified as 

clean. This verifies our model calibration strategy that leveraging field data in the HIE model 

development can also improve the model adaption performance.  

Figure 18. Model adaption performance using DOE3a and 50 samples of 14MW field data. 

 

Table 13. Model adaption performance metrics using DOE3a and 50 samples of 14MW field data. 

Accurate prediction Inaccurate prediction 

100% 0% 

 

To investigate the requirement on the number of field data sample for model adaption, we also conducted 

a sensitivity analysis by updating the model with 10 and 30 field samples. The comparison results 

including using 50 samples are shown in Figure 19 and Table 14. From this investigation, we conclude 

that the model updating with more field data yields better performance. 
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Figure 19. Model adaption performance using DOE3a and 50 samples of 14MW field data. 

 

Table 14. Model adaption performance metrics using DOE3a, 10, 30 and 50 samples of 14MW field data. 

# of field sample data  Accurate prediction Inaccurate prediction 

10 83.8% 16.2% 

30 98.6% 1.4% 

50 100% 0 

 

3.3 Discussions of the observations and findings from Task 3  

In this task, our key focus was acquiring field data, calibrating the HIE model built from simulation data, 

and validating its performance so we can have confidence in implementing the model on real-world 

turbines. By analyzing GE’s Haliade X prototype data collected in Q1 of 2020 and January of 2022, we 

realized there were two different real-world scenarios that need different calibration strategies and 

methods. One scenario (Scenario 1) is to deal with the real-world environmental conditions different from 

the simulation. The second scenario (Scenario 2) is to deal with the individual turbine operation 

behaviors.  

We successfully defined two calibration strategies and methods to tackle each of the scenario 

respectively. By applying the field data as aforementioned to the model calibration and validation, we 

proved that: 

1) the “calibration via re-simulation” method improved the model performance from 79% to 89% 

for Scenario 1. 
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2) the “calibration via model updating” method improved the model performance from 6% to 100% 

for Scenario 2.   

Our findings further validate that our model calibration methods yield satisfactory model performance 

with available input variables in the real-world. Conclusions from this milestone are crucial in 

demonstrating how to leverage physics-based simulation data and sparse field data to generate models 

that can estimate the blade health condition and predict future states, and ultimately enable condition-

based maintenance strategy for offshore wind. 

Over the course of this project, the Haliade X blade did not appear any leading-edge erosion so the data 

available for HIE model calibration was from a clean blade. In the future, data from inspecting Haliade X 

blade will indicate leading edge erosion initiation and development. Future research will include the non-

clean blade data in the calibration process and improve the method as needed  
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4 Task 4: Building RUL prediction mode 

4.1 A suitable roughness growth model identified 

In order to plan and schedule the condition-based blade maintenance, knowing only the current blade 

roughness is not sufficient. The CBM strategy requires predicting the future roughness growth.  Our key 

focus in this effort is to 1) study the prior art of blade leading edge erosion prognostics modeling; 2) 

identify gaps and challenges in applying the existing methods to the real-world wind turbine and farm 

operations; 3) define our prognostics approach that can feasibly forecast the future states of blade 

roughness by tackling the challenges. 

4.1.1 State of the art prognostics methods 

In the past deliverables we demonstrated that it is possible to build a Health Index Estimator (HIE) model 

for roughness quantification by utilizing standard SCADA data channels. Given the model is reliably able 

to discern between different roughness states, we expect to detect the onset of blade roughness at an early 

stage. While it is unlikely that any pertinent action would be needed at that detection point, the interest 

would be in periodically querying the system, estimating new roughness state, and tracking the rate of 

deterioration. Once, a deterioration trend is established with certain confidence, such a trend can be 

further utilized to forecast blade roughness into the future. This forecast specifically determines when the 

roughness level is likely to cross a predetermined threshold beyond which it is not advisable to operate 

the turbine without a maintenance action. In the condition monitoring literature this condition-based 

forecast is referred to as Prognostics [5].  

4.1.1.1 Prognostics Methods 

In the condition monitoring literature, there are a number of modeling methods that can be largely 

classified into four broad categories [6]. Depending on availability of information from the asset as well 

as prognostics resolution required for optimizing the post-prognostic action, the following methods can be 

considered. 

1. Reliability Based Methods – these are population based statistical summarization of failure rates 

observed in the field or through manufacturer test programs. Failure data from the past in existing fleets 

are fit to parametric distributions such as Weibull, which are used to predict failure rates in the assets of 

interest. Predictions are typically expressed as Mean-time-to-failure (MTTF) that can be used to plan 

scheduled maintenance programs. These models do not distinguish between how gently or aggressively 

an asset was used and only provides statistically guaranteed performance over a fleet of assets. 
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2. Proportional Hazard Models – These models carefully analyze loading history of the asset to 

determine life consumption till date, and then subtract estimated consumed life from reliability-based 

prediction of total life. These models perform better than reliability-based methods alone, however, do not 

consider knowledge of asset health from inspection or remote monitoring methods. 

3. Condition-Based Methods – These methods rely on remote condition monitoring to assess 

current health state of the asset, and then use a degradation propagation model along with expected future 

usage profile to forecast asset health into the future. So far, these methods have been shown to be most 

versatile and accurate, however the performance depends on quality of monitoring data and a knowledge 

of fault/degradation propagation mechanism. A spectrum of physics-based, empirical, or data-driven 

propagation models have been shown to be useful in this context. As an added advantage these methods 

also provide best quantitative evaluation of prediction uncertainties that must be factored in risk 

calculations for downstream maintenance planning and scheduling. 

4. Operational History Data-based Methods – in scenarios where a large amount of operational 

history data from assets are available, recent developments in machine learning and deep learning 

methods have shown reasonably comparable performance to condition-based methods. The key advantage 

is that an explicit fault propagation model per failure/degradation mode is not required. This can be 

extremely powerful, if sufficiently rich operational history data can be made available and in large 

amounts. 

In this work we intend to develop a condition-based method for prognostics. Our HIE model already 

accomplishes the first key step in prognostics, i.e., current state estimation. Through sequential 

estimations of current roughness states, and a model to fit a trend on those states will allow us to forecast 

growth of roughness. Most importantly, these estimates will be recomputed and revised at a 

predetermined frequency to track any acceleration or deceleration in roughness growth due to 

environmental and operational loading conditions on the wind turbine assets. 

4.1.1.2 Technical Challenges in Prognostics 

Prognostics or accurate estimation of remaining useful life (RUL) is a challenging problem, sometimes 

due to the type of information available or the lack of it. It is important to consider these challenges while 

developing a solution, and accordingly interpret the outcomes in downstream decision making 

appropriately weighing associated risks. Some of the key challenges are enumerated here. 
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Challenge 1: Availability and quality of data 

Accuracy of predicted quantity heavily depends on three key factors among many others –  

(1) Quality of measurement data used for current state (roughness severity) estimation - Quality of 

measurement data is a function of observability through available sensing and sensing resolution. These 

are relatively controllable if an asset is designed with appropriate sensors or if these sensors can be added 

once their need is established. 

(2) Our knowledge (model) of damage state evolution under expected operational and environmental 

loading - For offshore wind application, our project has established (through simulation data) that 

commonly measured SCADA parameters can be effective in estimating roughness severity. However, 

very limited knowledge exists in literature about roughness growth model over time and almost no 

operational data exists to our knowledge. Some of these models have been discussed in prior section, 

which will be leveraged in our simulation of roughness growth curves. Furthermore, some inspection-

based efforts within GE intend to document leading edge roughness growth for onshore wind turbines, 

which are under our consideration to glean this knowledge to the extent possible within time and budget 

scope of our project. 

(3) Accuracy of the knowledge about expected future loading on the system – Given a damage state, how 

fast or slow it will evolve largely depends on future stress vectors such as environmental and operational 

loading, which can at best be forecasted with associated uncertainties. In addition, knowing the actual 

failure mechanism is critical in understanding how quickly the material or component will fail. Examples 

of this include material erosion, defect driven cracks and delamination. Prognostic methods tend to 

forward propagate a range of scenarios to produce distributions of expected degradation, however the 

accuracy of any forecast heavily depends on accuracy of weather forecast as well as accuracy of 

operational loading forecast. 

As mentioned earlier, while quality of measurement is sometimes controllable, the other two factors (i.e. 

2 and 3) are often learned through known domain physics (i.e. a physics model of a crack growth over 

time) or from historical data, if made available in sufficient quantities (e.g. several run-to-failure 

trajectories, or weather patterns at a site). Both these factors have been challenging in the real-world 

offshore wind as well and we intend to utilize as much information available as possible and make some 

assumptions where needed. 
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Challenge 2: Uncertainties  

There are several sources of uncertainties that play an important role in prognostic estimations (see Figure 

20). To briefly enumerate, these sources of uncertainty include – measurement data (present state) 

uncertainty, future loading/usage uncertainty, modeling uncertainty (both state estimation and forecasting 

methods), all of which tend to cumulatively stack up as long-term forecasts are generated  [5]. Hence, a 

forecast far out in future tends to have higher uncertainty than a relatively short-term prediction, even if 

the sources of uncertainties remain the same. 

Figure 20. Various sources of uncertainties affecting accuracy of prognostics (adapted from  [5]). 

 

 

4.1.2 Challenges in in building blade roughness growth model for offshore wind  

In addition to the technical challenges in building prognostics models in general, this section will 

summarize the unique challenges in building blade roughness growth model for offshore wind by 

translating the aforementioned technical challenges to this project. 

4.1.2.1 Scarce real-world data  

To build a blade roughness (or LEE) growth model for offshore wind, either physics-based, empirical, or 

data-driven propagation models can be applied as a condition-based prognostics modeling method. In this 

context of offshore wind, limited physical knowledge and lacking real-world data are the challenges. 
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4.1.2.2 Definition of remaining useful life 

Another challenge is about how to define the remaining useful life for blade roughness. Different from 

structural degradations/failures impacting the blade health, leading edge erosion changes blade surface 

roughness, which thereafter degrades blade’s aero performance. However, leading edge erosion may not 

necessarily cause imminent blade structural failure that is conventionally defined as the so-called “end-of-

life”. As described in our proposal, the ultimate industrial value of the leading-edge erosion growth model 

is to enable CBM to reduce the OPEX while recovering AEP loss due to aero performance degradation 

from LEE. Therefore, instead of using “blade structural failure”, we choose a maximum allowable 

percentage of AEP loss before repair as the definition of “end-of-life” and define “remaining useful life” 

as the remaining time to the end of life in our roughness growth model. This maximum allowable 

percentage of AEP loss will depend on the farm owner’s overall O&M strategy and other constrains. By 

no means we could suggest a universally representative “remaining useful life” for blade roughness. As 

one example and for the purpose of technology development, we tend to define 1.5% of AEP loss due to 

leading edge erosion as the “end-of-life” for our roughness growth model. Since the offshore wind 

industry is still in the exploratory phase where new technologies are being developed and the farm-level 

CBM strategy is being built, outcomes from this project will be a critical part of that strategy. Our goal of 

this milestone is to develop a POC blade roughness growth model under the assumption of 1.5% AEP 

loss being considered as the “end-of-life”.   

4.1.2.3 Compounding effect of lightening on blade roughness change  

The last challenge is to decouple the blade roughness changes due to a catastrophic damage event such as 

a lightning strike from the roughness growth due to erosion damage from rain and hail. Lightning strikes 

on offshore wind blades is a serious concern due to its potential damages on blade health and 

performance. To ensure our roughness growth model can accurately forecast the future states, we need an 

approach to monitor and detect the impact of lightening events and update the roughness growth model if 

necessary. 

4.1.2.4 Correlating blade roughness to observable LEE in real world 

As described in Task 1, to build a blade HIE model without a large amount of field data, we leveraged a 

high-fidelity Bladed physical model to generate simulation data for Haliade X. Since the blade leading 

edge health state (ie. erosion damage or roughness) per say is not an input parameter in Bladed, we 

instead represented this by modification of aerodynamic lift and drag coefficients at different blade 

sections as inputs in Bladed which is a result of erosion induced roughness changes along the leading 

blade edge. However, blade roughness changes are not a directly measurable parameter today in the real-
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world O&M practice or lab testing for quantifying the blade LEE growth. Instead, visual inspection to 

observe the physical material damages such as pit, dent, gouge, and delamination is performed to monitor 

the erosion growth. To validate a roughness growth model with real-world leading edge erosion data, one 

primary challenge is to map the observed blade LEE quantifications to roughness changes that we used in 

our models. 

4.1.3 Blade LEE growth model and validation approaches  

Previous milestones demonstrated that ML-trained HIE model can effectively detect and ascertain the 

degree of roughness from simulation data. To demonstrate this capability, simulations were run with 

aerodynamic coefficients that are expected to represent various levels of roughness ranging from clean (0-

12.5%) to very rough (>125%), relative to a 100% roughness that defined turbine trip setpoint through 

wind tunnel tests. One key piece of information that is missing is the time evolution of roughness, i.e. for 

instance, how long it could take for roughness to grow from ~12.5% to 25% as compared to 25% to 50%.  

Figure 21. Illustrative roughness growth trends using simulation 

 

As described in reference  [7], previous works established a linear relationship between environmental 

stresses (measured in cycles) and mass loss. Mapping of cycles to calendar time is required to integrate 

prognostic information into maintenance processes. Given time-scales (months-years) for such roughness 

to grow, it may be a reasonable assumption to model linear growth, however, previous studies on a 

number of physical systems have shown that typically fault growth tends to follow exponential growth 

patterns  [8]. In absence of operational data from actual offshore farms and any experience with leading 

edge erosion patterns, we will develop a generalized prediction model with capability to progressively 

learn any arbitrary monotonic growth pattern illustrated in Figure 21. We will use state-of-the-art 

condition-based methodology that follows a two-step recursive estimation approach mentioned in Section 

4.  
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4.2 Completion of the initial prediction model and data preparation; 

Completion of RUL model building and validation 

4.2.1 Data generation for RUL model 

In the past deliverables we demonstrated that it is possible to build a Health Index Estimator (HIE) model 

for roughness quantification by utilizing standard SCADA data channels. Given the model is reliably able 

to discern between different roughness states, we expect to detect the onset of blade roughness at an early 

stage. From the onset, an RUL model is needed to forecast blade roughness into the future. This forecast 

specifically determines when the roughness level is likely to cross a predetermined threshold beyond 

which it is not advisable to operate the turbine without a maintenance action. In the condition monitoring 

literature this condition-based forecast is referred to as Prognostics [5]. In this report, RUL model and 

prognostics model are exchangeable terminology.  

4.2.1.1 Relationship between roughness and AEP loss 

Throughout this program, we use blade roughness to quantify the blade health status and define the end-

of-life as the time when the roughness level exceeds a predetermined threshold. However, as a common 

industrial practice, rain erosion lab tests measure AEP loss to study the change of blade health over time. 

Therefore, we establish the relationship between blade roughness and AEP loss so that the change of 

blade roughness over time can be assessed.  

Our previous Bladed simulation has generated power curve for several specified roughness levels and the 

corresponding AEP can be calculated. The AEP for the initial roughness level of 12.5% is treated as a 

reference AEP and accordingly the AEP loss is 0. Higher AEP loss can be caused at larger roughness 

level, which is shown in Figure 22(a). To enable evaluation of the roughness level for any specific AEP 

loss, we develop a nonlinear model to characterize the relationship between them.  

First, we transform roughness values using the Box-Cox method so that the transformed roughness values 

are more normally distributed and potentially more linearly correlated with AEP loss.  

𝑦∗ = 𝑓(𝑦) = {
𝑦𝑙−1

𝑙
,         𝑖𝑓 𝑙 ≠ 0,

log(𝑦) ,     𝑖𝑓 𝑙 = 0,
  where 𝑦 is roughness. 

The maximum likelihood estimates of 𝑙 is 1.84 and the resulting transformation is 𝑦∗ = (𝑦1.84 − 1)/1.84. 

Second, for the transformed roughness vs. AEP loss shown in Figure 22(b), we fit a linear regression 
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model with the constraint that the fitted linear line must go through the initial point. The fitted linear 

model using the maximum likelihood method is 𝑦∗ = 55.96 + 1400.61𝑥. Combining results from the 

above Box-Cox transformation and linear regression model, the relationship between roughness and AEP 

loss is characterized by the following equation, which is also shown in Figure 22(c): 

𝑦 = [1.84(55.96 + 1400.61𝑥) + 1]1/1.84, 

where 𝑦 is roughness and 𝑥 is AEP loss. 

Figure 22. Relationship between roughness and AEP loss 

 

 

4.2.1.2 Lab-based rain erosion test data 

For research purpose, a GE team has carried out a rain erosion lab test to measure how AEP changes over 

time due to blade erosion. In this lab test, the blade with and without the leading edge protection (LEP) 
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system were both considered, and a constant rain intensity was used. LEP is a piece of clamp-on 

compoennt that protects leading edge from erroded. Figure 23 shows the roughness change over time 

based on the lab test using the roughness vs. AEP loss relationship deveoped in the previous section. An 

incubation time period is present for both blades with and without LEP, which is two years and half year, 

respectively. After the incubation time period, the roughness value for the blade without LEP increases 

much faster than that with LEP, indicating that the LEP system can protect blade efficiently and extend 

blade life. 

Figure 23. Lab test data 

 

To facilitate the data generation discussed in the next section, we develop a baseline RUL model to 

characterize the increasing trend of roughness over time given the constant rain intensity that was used in 

the lab test. Specifically, we consider a constrained nonlinear model as follows: 

𝑦 = 𝑦0 + 𝑎(𝑥 − 𝑥0)𝑏 + 𝜀,    

where 𝑥 is time (year), 𝑦 is roughness (%), 𝑥0 is the incubation time, 𝑦0 = 12.5, 𝑎 > 0,   𝑏 ≥ 1, and 𝜀 is 

the error term. This nonlinear model implies that the fitted curve must go through the initial point 

(𝑥0, 𝑦0), it is monotonically increasing, and its increasing rate can potentially increase over time. Note 

that the linear trend is a special case of the above nonlinear model when 𝑏 = 1 meaning the increasing 

rate is a constant. As shown in Figure 24, the fitted baseline RUL models for the blade with and without 

LEP are: 
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𝑦 = 12.5 + 10.58(𝑥 − 2) for the blade with LEP, 

𝑦 = 12.5 + 45.81(𝑥 − 0.5) for the blade without LEP. 

These two fitted models indicate that a linear trend represents how roughness changes over time after the 

incubation time period based on the limited lab test data. 

Figure 24. Baseline RUL model 

 



2016 NYSERDA Marketing’s Template for Reports 

 

53 
 

4.2.1.3 Data generation originated from lab-based rain erosion test 

The change of blade roughness over time can be impacted by multiple factors such as precipitation, wind 

speed, and turbine operation. Here, we combine the baseline RUL model and the precipitation data at 

Rotterdam, the Netherlands to simulate data that represents how blade roughness may change over time in 

the real world.  

Figure 25(a) shows the monthly precipitation data at Rotterdam, the Netherlands since 2010, and Figure 

25(b) presents its distribution normalized by the constant rain intensity used in the lab test. Our data 

generation process is summarized in Table 15. 

Figure 25. Precipitation at Rotterdam 

 

Table 15. Data generation process 

Step 1: Start with time 0 for which the initial roughness level is 𝑦0 = 12.5%. 

Step 2: Randomly generate an incubation time 𝑥0~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑥0,𝑚𝑖𝑛, 𝑥0,𝑚𝑎𝑥). Specify all the 

roughness values until 𝑥0 the same as the initial roughness level 𝑦0 = 12.5%. 

Step 3: For each time point after 𝑥0, say 𝑥𝑖, calculate the increasing rate 𝑎𝑖 starting from its previous 

time point 𝑥𝑖−1, which is equal to the increasing rate 𝑎 in the baseline RUL model multiplied by a 

random sample of the precipitation ratio. 

Step 4: Calculate the roughness level at time 𝑥𝑖 which is 𝑦𝑖 = 𝑦𝑖−1 + 𝑎𝑖(𝑥𝑖 − 𝑥𝑖−1 ). 

Step 5: Repeat Step 3-4 and sequentially generate data points (𝑥𝑖 , 𝑦𝑖) until a pre-determined maximum 

time point. 
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Here, the data points (𝑥𝑖 , 𝑦𝑖) are generated monthly. For the blade with LEP, the baseline increasing rate 

𝑎 = 10.58/12 and  𝑥0~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(18, 30). For the blade without LEP, the baseline increasing rate 𝑎 =

45.81/12 and  𝑥0~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(4, 8). We repeat the data generation process 1,000 times, and all the 

generated 1,000 curves are shown in Figure 26. Given a user-defined threshold (i.e, 70% roughness), it 

can be observed that the blade without LEP will reach to the end of life much faster than that with LEP, 

which reflects the effectiveness of the LEP system. 

Figure 26. Data generation summary 
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4.2.2 RUL model development and validation 

The generated data discussed in Section 4.2.1.3 represents a simulated ground truth of how blade 

roughness level increases over time and when it will reach to a user-defined threshold. At any time, only 

partial data of roughness vs. time is available which will be used to build an RUL model to predict 

remaining useful life before the threshold is reached. In this section, we discuss the RUL model 

development and perform model validation. 

4.2.2.1 RUL model building 

An RUL model can be developed at any time when it passes the incubation period and the available 

roughness vs. time data is sufficient for model building. An example is shown in Figure 27(a), where the 

roughness vs. time data is available for the first 11 months and the incubation period is 6 months. Based 

on the simulated ground truth, the true end of life in this case is the 22nd month when roughness exceeds a 

given threshold of 70%. Hence, the true RUL at the modeling time of the 11th month is 22-11=11 months. 

To build an RUL model, we consider two functional forms to characterize the increasing trend of 

roughness over time. The first one assumes linear trend as follows: 

𝑦 = 𝑦0 + 𝑎(𝑥 − 𝑥0) + 𝜀, 

where 𝑥 is time (month), 𝑦 is roughness (%), 𝑥0 is the incubation time, 𝑦
0

= 12.5, 𝑎 > 0, and 𝜀 is the 

error term. The model implies that the fitted linear line will go through the initial point (𝑥0, 𝑦0) and it is 

monotonically increasing. 

The second one allows non-linear trend as follows: 

𝑦 = 𝑦0 + 𝑎(𝑥 − 𝑥0)𝑏 + 𝜀,    

where 𝑥 is time (month), 𝑦 is roughness (%), 𝑥0 is the incubation time, 𝑦0 = 12.5, 𝑎 > 0,   𝑏 ≥ 1, and 𝜀 is 

the error term. This nonlinear model implies that the fitted curve will go through the initial point (𝑥0 , 𝑦0), 

it is monotonically increasing, and its increasing rate can potentially increase over time. Note that the 

linear trend is a special case of the above nonlinear model when 𝑏 = 1 meaning the increasing rate is a 

constant. 
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Figure 27. An RUL model building example 

 

Figure 27(b) illustrates that a linear RUL model is built at the 11th month for a blade without LEP. 

Applying this model to the future time points, we can measure that the predicted end of life is the 19th 

month when the predicted roughness exceeds the threshold of 70% and therefore the predicted RUL is 19-

11=8 months. Compared with the true RUL of 11 months, this model underestimates the RUL by 11-8=3 
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months. The same RUL model building process can be performed repeatedly as time moves on. Figure 

27(b) shows that a linear RUL model is re-built at the 17th month as a few more data points become 

available. Correspondingly, the predicted end of life based on this updated RUL model is the 20th month, 

and the predicted RUL is 20-17=3 months. The true RUL at this new modeling time is 22-17=5 months, 

therefore the re-built model underestimates the RUL by 5-3=2 months. Notice that the updated RUL 

model at the 17th month performs better than that at the 11th month as the updated predicted end of life is 

closer to the true end of life and the RUL prediction error is smaller, which indicates that the RUL model 

built upon more recent data points can better capture the increasing trend of roughness over time and 

provide more accurate RUL prediction. 

 

4.2.2.2 RUL model validation 

To perform the RUL model validation and evaluate model performance, we apply the RUL model 

building process to each of the 1000 generated data curves. For each data curve, the RUL model is 

updated at every time point starting with an after-incubation time when a sufficient set of data points are 

available for model building, and the updated RUL model is used to predict the end of life and RUL. 

Also, both linear and nonlinear RUL models are considered. 

The model validation results for the blades with and without LEP are summarized in Figure 28 and Figure 

29, respectively. Each summary plot shows the change of RUL prediction error against the true RUL at 

the modeling time (the difference between the modeling time and the true end of life). For each true RUL 

(or the number of months prior to the end of life), a boxplot is used to summarize the distribution of RUL 

prediction error across the 1000 curves. Each boxplot includes a box displaying the median, the 1st 

quartile and the 3rd quartile, a lower whisker which is the 1st quartile minus 1.5 times the interquartile 

range, and an upper whisker which is the 3rd quartile plus 1.5 times the interquartile range.  

It can be observed that the variation of the distribution of RUL prediction error is smaller as the modeling 

time gets closer to the true end of life, which indicates that the updated RUL model can leverage more 

recent data to better capture the roughness change over time and predict RUL more accurately. 

Furthermore, the nonlinear model allows the increasing rate of roughness to potentially increase with 

time. Hence, when the trend based on partial data at a modeling time is significantly different from the 

trend that would be represented by the entire data, the predicted end of life from the nonlinear model is 

likely to be earlier than the true end of life and the nonlinear model tends to underpredict RUL. This can 

happen more likely at a very early modeling time leading to a larger RUL prediction error for the 

nonlinear model compared to the linear model as shown in Figure 28. 
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Figure 28. Model validation for LEP 
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Figure 29. Model validation for no-LEP 

 



2016 NYSERDA Marketing’s Template for Reports 

 

60 
 

4.3 Discussions of the observations and findings from Task 4  

In this Task, we firstly investigated the state-of-the-art prognostics modeling methods and defined the 

challenges in applying those methods for offshore wind. We then studied a representative rain erosion lab 

test data base on which a baseline RUL model was developed to characterize the increasing trend of 

roughness over time given a constant rain intensity. Combining the baseline RUL model with the 

precipitation data in Rotterdam where GE’s Haliade X prototype was installed, we simulated a set of data 

to represent how blade roughness may change over time in the real world. For the generated data, we 

developed a roughness RUL model building process and performed model validation to demonstrate the 

effectiveness of our proposed modeling method.  

More studies can be performed in the future. For example, when other factors are considered in the lab 

test such as wind speed and turbine operational conditions, we can incorporate those factors into our data 

generation and RUL modeling process to further understand whether and how blade roughness change 

over time would be impacted. To map the real-world blade leading edge erosion conditions to roughness 

level changes, significant research and testing efforts are required in the future.  
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5 Project summary  

Contributions and results: 

In this project we have built and proved a framework for developing HIE and RUL models to realize 

CBM when historical data and failure data are limited. This framework includes 1) using physical model 

as simulator to generate DOE data to complement the scarce real-world data; 2) using most advanced 

machine learning methods to build health index models; 3) calibrating the health index models with 

available field data so the models can be deployable; 4) propagating the health index to the future with a 

RUL model to enable CBM. As proof-of-concept, our use case is blade leading edge erosion. We proved 

this framework technology based upon GE’s Haliade X offshore turbine blade. We believe this 

framework is generally applicable for other failure modes as well as different turbine components.   

Remaining challenges and our recommendations:  

Certainly, more studies can be performed in the future on the RUL modeling area. For example, when 

other turbine operation factors are considered in the lab test such as wind speed and rotor speed, we can 

incorporate those factors into our data generation and RUL modeling process to further understand 

whether and how these factors would impact the blade roughness changes over time. Since GE’s offshore 

turbines and fleets are still young, there are no noticeable leading-edge erosions or roughness changes yet, 

which makes the large-scale field validation for HIE and RUL models impossible at this time. When more 

field data becomes available, we will further study and enhance our calibration methods.   

Future efforts: 

As one of the future effort, GE Research team is working with GE Vernova’s offshore business to deploy 

this HIE model to the Haliade X prototype for further validation, and plan for large scale validation when 

other large-scale projects come to live.  In the meanwhile, we intend to apply this framework technology 

to address the HIE and RUL for other defects critical to offshore wind turbine maintenance, such as blade 

crack and blade delamination. The O&M cost reduction using CBM for blade will be realized once a 

holistic solution is built, validated, and implemented to tackle majority of the failure modes.   

 

 



2016 NYSERDA Marketing’s Template for Reports 

 

62 
 

6 Bibliography 

 

[1]  G. Huang, etc., "Extreme learning machine: Theory and applications," Neurocomputing, 

pp. 489-501, 2006.  

[2]  G. Huang, etc., "Extreme Learning Machine: A New Learning Scheme of Feedforward 

Neural Networks," Proceedings of International Joint Conference on Neural Networks 

(IJCNN2004), 2004.  

[3]  G. Huang, "An Insight into Extreme Learning Machines : Random Neurons , Random 

Features and Kernels," New York, Springer New York LLC, 2014, pp. 376-390. 

[4]  GE Research, "154630_GE_deliverable_D0A.1_M3," 2021. 

[5]  K. Goebel, M. J. Daigle, A. Saxena, I. Roychoudhury, S. Sankararaman and J. R. Celaya., 

Prognostics: The science of making predictions., Createspace Independent Publishing 

Platform, 2017, p. 396. 

[6]  A. Saxena, S. Sankararaman and K. Goebel, "Performance Evaluation for Fleet-based and 

Unit-based Prognostic Methods," in 2nd European Conference of the PHM Society, 

Nantes France, 2014.  

[7]  A. Dashtkar and e. al, "Rain erosion-resistant coatings for wind turbine blades: A review," 

Polymers and polymer composites, 2019.  

[8]  K. Goebel, M. J. Daigle, A. Saxena and e. al, Prognostics: The science of making 

predictions, Createspace Independent Publishing Platform, 2017.  

[9]  KNMI, "KNMI data platform," Royal Netherland Meteorologic Institute, [Online]. Available: 

https://dataplatform.knmi.nl/organization/. 

[10]  B. Saha, K. Goebel, A. Saxena and J. Celaya.US Patent 8,725,456, 2014. 

[11]  A. Saxena, J. S. B. Celaya and S. G. K. Saha, "Metrics for Offline Evaluation of 

Prognostics Performance," in International Journal of Prognostics and Health Management 

(IJPHM), 2010.  

[12]  IEC, "64100-1: Wind Energy Systems -- Part I: design requirements," IEC, 2019. 

[13]  F. Wilcoxon, "Individual Comparisons by Ranking Methods," Biometrics Bulletin, vol. 1, no. 

6, pp. 80-83, 1945.  



2016 NYSERDA Marketing’s Template for Reports 

 

63 
 

[14]  H. B. a. D. R. W. Mann, "On a Test of Whether One of Two Random Variables Is 

Stochastically Larger Than the Other," The Annals of Mathematical Statistics, vol. 18, no. 

1, pp. 50-60, 1947.  

[15]  GE Research D2.1, "154630_GE_deliverable_D2.1_M8," Niskayuna, 2021. 

[16]  G. Springer and a. C. Bax, A Model of Rain Erosion for Homogeneous Materials, AFML-

TR-72-106 (Air Force Materials Directorate).  

[17]  G. Yang, S. Springer and C. I., "Model for the Rain Erosion of Fiber Reinforced 

Composites," AIAA, vol. 13, no. 7, p. George S. Springer and Cheng I. Yang, 1975.  

[18]  e. a. Arash Dashtkar, "Rain erosion-resistant coatings for wind turbine blades: A review," 

Polymers and polymer composites, 2019.  

[19]  H.M.Slot, E.R.M.Gelinck, C.Rentrop and E. d. Heide, "Leading edge erosion of coated 

wind turbine blades: Review of coating life models," Renewable Energy, vol. 80, pp. 837-

848, 2015.  

[20]  A.N.Kaore, U.B.Kale, C.S.Yerramalli and H.K.Raval., "Turbine specific fatigue life 

prediction model for wind turbine blade coatings subjected to rain erosion," Materials 

Today Communication, vol. 31, 2022.  

[21]  L. Mishnaevsky Jr, "Repair of wind turbine blades: Review of methods and related 

computational mechanics problems," Renewable Energy, 2019.  

[22]  J. Chen and J. Wang, "Review on rain erosion protection of wind turbine blades”. Journal 

of Coatings Technology and Research," Journal of Coatings Technology and Research, 

vol. 16, no. 1, pp. 15-24, 2019.  

[23]  B. Amirzadeh, A. Louhghalam, M. Raessi and M. Tootkaboni, "A computational framework 

for the analysis ysis of rain-induced erosion in wind turbine blades, part i: Stochastic rain 

texture model and drop impact simulations," Journal of Wind Engineering and Industrial 

Aerodynamics, vol. 163, pp. 33-43, 2017.  

[24]  GE Research, "154630_GE_deliverable_D1.3_M6," 2021. 

[25]  G. Research, "154630_GE_deliverable_D1.3_M6," Niskayuna, 2021. 

[26]  GE Research, "154630_GE_deliverable_D1.3_M6," 2021. 

[27]  R. GE, "154630_GE_deliverable_D2.2_M9."," 2022. 

[28]  GE Research, "154630_GE_deliverable_D0A.1_Q2_M6," 2021.  

 


