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Information contained in this document, such as web page addresses, are current at the time of 

publication. 

Abstract 

In this report we describe the design of a Radar system that is capable of producing line of sight 

measurements of wind velocity within a wind farm in various weather conditions. We also describe the 

algorithms and their implementation for the simultaneous estimation of wake model parameters and 

velocity components of the wind within an offshore wind farm. Furthermore, we also describe an 

optimization module used to compute the optimal yaw angles that maximize farm power production. It 

includes a clustering algorithm that can break the problem apart to solve a set of smaller problems much 

faster than a large single problem. Finally, we also compute the levelized cost of energy, and show that 

the benefits of having a lower uncertainty in the parameters of the models will reduce the cost of energy 

showing that the investment in new sensing equipment is worthwhile. 
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Executive Summary 

This program originated from the industry needs for wake management and optimization to improve farm 

level power production in offshore wind farms. The project was funded by the National Offshore Wind 

Research & Development Consortium and New York State Energy Research and Development Authority. 

The purpose of the program is to demonstrate that the use of state-of-the-art radar sensors improve the 

quality of the estimation without incurring in higher costs for energy production. The Levelized Cost of 

Energy (LCOE) is calculated to quantify the economic benefits of introducing radars to estimate wake 

model parameters to be used for yaw optimization. The LCOE provides insights into the cost of energy 

production considering the fixed and maintenance costs of the wind turbines and radars and comparing 

them with the improved energy production due to wake management. This value shows if producing 

energy with the new system has a lower cost and will determine the viability of using the new sensors. In 

Figure 1 

we show a depiction of how the wake management system works in combination with the Radar system. 

This illustration shows how the Radar measurements are processed through a signal processing unit that 

feeds the line-of-sight (LOS) velocity measurements to the wake estimator unit that identifies the 

parameters of the model. Finally, these parameters are fed to the wake optimizer that will compute the 

best yaw angles to deviate the wake of the upstream turbines away from the downstream turbines. 

 

 

Figure 1: Detailed process diagram describing the processing units and the wake and turbine locations. 

 

 

Wind farm wake control and optimization has advanced significantly in recent years through the 

development of physics-based farm-level wake models, of strategies to optimize energy capture, and 

conducting initial validation campaigns [1]–[8]. However, wake control solutions are not yet mature for 
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industrial application mainly due to the uncertainty surrounding the wind resource and the corresponding 

difficulties to prove the value of the technology. Indeed, existing solutions rely solely on the accuracy of 

wake models and do not adapt their parameters to match the ever-changing environmental conditions. 

Hence, the uncertainty level precludes the achievement of the expected additional energy capture, 

discouraging a commercial offering for farm operators. The opportunity proposed here is to significantly 

reduce this uncertainty by introducing embedded radar systems that directly measure the wakes, and new 

algorithms to continuously optimize the wake steering.  

 

In this program we made advances to the technology readiness level of the technology by developing an 

estimator that can process the LOS velocity measurements from the Radar to simultaneously compute the 

model parameters and the velocity components of the wind flow within the farm. Furthermore, we 

developed a clustering approach that reduces the computational effort necessary to compute the optimal 

yaw angles necessary to maximize the power output of the farm. As part of the efforts necessary to 

complete this program we designed the Radar system needed to measure radial wind velocities up to the 

precision necessary for estimation and control and computed the levelized cost of energy (LCOE) 

including the added cost of the Radars and the benefits from improved energy capture from the optimized 

farm. 
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1 Annualized Energy Production Gains 

To properly account for the variability of wind conditions associated with the location of the farm we use 

the wind rose depicted in Figure 2.  

 

 

Figure 2: Wind rose associated with the farm location. 

 

Also, in this section we describe how we calculate the power gains associated with the wake management 

approach using the radar system. The methodology relies on extensive use of Monte Carlo simulations to 

propagate the uncertainty and to isolate the contributions of the new sensing system. The reference farm 

used in this work was selected to resemble the layout and wind characteristics typical of US offshore 

farms that are under construction or about to be built (see Table 1 and Figure 3). 

 

Figure 3: Reference farm and location of the radars 
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Turbine rated power  12 MW 

Number of turbines 64  

Layout  8x8  

Turbine separation   5 diameters 

Average wind speed  10.2 m/s 

Turbulence intensity  5.2 % 

Shear exponent  0.13  

Air density  1.23 kg/m3 

Table 1: Reference wind farm features 

 

In the following subsections we make use of the reference farm and wind conditions to compute the AEP gains 

obtained when implementing a wake management approach. Additionally, in this section we consider two cases: one 

where we make use of the radar system to estimate parameters for the wake model, and the second where we assume 

the radar system is not in place and we make use of any other sensors in the farm. For the latter approach we further 

assume 3 options associated with the level of uncertainty associated to the sensors being used: low, medium, and 

high. This will provide a range of AEP gains depending on the level of uncertainty.  

 

1.1 Quantification of Uncertainty 

For the quantification of uncertainty, it was necessary to use two simplified auxiliary problems for wake 

parameter estimation and for yaw optimization that will be defined below. Note that in §4 we describe a 

different approach for the estimation of parameters than the one described here. The reasoning behind this 

is as follows, for the controller we require a dynamic implementation of the estimation problem (§4.2). 

However, for the quantification of the uncertainty in the AEP gains we need the steady state solution of 

the parameter estimation problems. Thus, we implement a different approach that is better suited to the 

task of computing the uncertainty associated with the gains in power production to estimate the 

improvements in AEP and LCOE associated with the reduction in uncertainty in the estimated 

parameters. Furthermore, it is assumed that the time-averaged wind flow behavior through the farm 

follows a static wake model of the form 

[𝑈, 𝑃, 𝑤] = 𝒲(𝛾, Θ). 1 

 

Here, the magnitude 𝑈 is the field of three-dimensional wind velocities through the farm, 𝑃 is the vector 

of power values generated by each turbine, 𝑤 is the vector of turbine rotational speeds and the vector of 

yaw angles 𝛾 represents the decision variables of the controller to modify the behavior of the wake; 



 

3 

 

Θ represents a vector of unknown parameters. Model (1) is referred to as the wake model. This work 

utilizes the wake model in [9], with parametrization given by 

Θ = [𝑈∞, 𝜑, 𝑘𝑦, 𝛼]
𝑇
 2 

 

where the parameters are defined below in Table 8. 

1.1.1 Wake Estimation Problem Definition 

Let the vector 𝑦 denote the set of 𝑆 measurements in the wind farm including the standard sensors such as 

power and rotor speed, as well as any existing remote wind measurements, such as those coming from a 

radar sensor. Let  �̂� be the calculated value of the measurements 𝑦 based on Model (1). For any given 

realization of the wind field and the control 𝛾, the wake estimation problem is defined as 

Θ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛Θ  ∑‖�̂�𝑖(𝑈, 𝑃, 𝑤, Θ) − 𝑦𝑖‖𝑅𝑖

2

𝑆

𝑖=1

  
3 

s.t.     𝑈, 𝑃,𝑤 satisfy Eq. (1) 

 

where 𝑆 represents the total number of measurements, and 𝑅𝑖 is a positive weight matrix corresponding to 

the 𝑖𝑡ℎ measurement (usually a covariance matrix associated to the sensing equipment). The measurement 

𝑦 is obtained from Model (1) by adding sensor noise as described in §4.3. When the measurement 𝑦𝑖 

corresponds to the line-of-sight wind velocity (radial velocity) taken by a radar located at the point 𝑝𝑟 

illuminating the wind at point 𝑝𝑤
1, the specific form of the calculated measurement  �̂�𝑖 in (3a) is 

�̂�𝑖 =
〈𝑈(𝑝𝑤), 𝑝𝑤 − 𝑝𝑟〉

‖𝑝𝑤 − 𝑝𝑟‖
 4 

 

where 𝑈(𝑝𝑤) represents the wind velocity at the point 𝑝
𝑤

, and 〈⋅,⋅〉 the inner product. The calculated 

measurements also include magnitudes measured by standard wind turbine sensors, such as the the 

electrical power and the rotor speed. In what follows, Θ∗ denotes the solution to (3) when radar 

 

1 The point 𝑝𝑟 represents the 3D spatial location of the radar, while the point 𝑝𝑤 is the 3D spatial location of a grid point where 

the wind speed is measured (every black dot in Figure 4). 
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measurements are included, while Θ∗,𝑛𝑟
 corresponds to the solution of a wake estimation problem without 

remote sensing. 

 

 

Figure 4: Pointwise radar measurements in front of every turbine represented by black. 

 

In Figure 4, we show the location of the regions of interest (ROI) in front of each turbine. All 

measurements in this section are assumed to be in these ROIs, i.e., all the black dots in the picture are the 

points 𝑝𝑤. 

1.1.1 Wake Optimization Problem Definition 

For any wind field realization, the wake optimization problem is defined as  

𝛾∗(Θ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛾 ∑𝑃𝑖(𝛾, Θ)

𝑁

𝑖=1

 
5 

s.t.      𝑈, 𝑃,𝑤 satisfy Model (1) 

−𝛾𝑚𝑎𝑥 ≤ 𝛾𝑖 ≤ 𝛾𝑚𝑎𝑥  ∀ 𝑖 = 1,… ,𝑁 

 

where 𝑃𝑖 the power generated at the 𝑖𝑡ℎ turbine. 

1.1.2 Uncertainty Propagation 

The uncertainty propagation calculation between noisy field measurements and attained power levels is as 

follows. For each point in a gridΘ𝑡𝑟𝑢𝑡ℎ of wind/wake conditions defined by 
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𝑈∞
𝑡𝑟𝑢𝑡ℎ = 3,4,…,30 m/s 

𝛽∞
𝑡𝑟𝑢𝑡ℎ = 0,15,30,…, 345 deg 

𝑘𝑦
𝑡𝑟𝑢𝑡ℎ = 𝑘𝑦

0 

𝛼𝑡𝑟𝑢𝑡ℎ = 𝛼0 

 

a Monte Carlo simulation was performed assuming the measurement error  �̂�𝑖 − 𝑦𝑖 is normally distributed 

with standard deviation 𝜎𝑖. For each Monte Carlo trial the process to calculate the uncertainty propagation 

consists in solving the estimation Problem (3) to obtain the parameters Θ, then solving the control 

problem (5) and finally collecting the statistics of the resulting performance given by the farm power 𝑃. 

From the results obtained here we compute the expected AEP with 

𝐴𝐸𝑃̅̅ ̅̅ ̅̅ = 𝐻𝑝𝑌 ∑ ∑𝑓(𝑈𝑗, 𝛽𝑘)𝐸𝑗,𝑘 [∑𝑃𝑖(𝑈𝑗 , 𝛽𝑘)

𝑁

𝑖=1

]

𝑁𝑢

𝑗=1

𝑁𝑑

𝑘=1

 6 

 

where 𝑁 is the number of turbines in the far, 𝑁𝑑 is the number of distinct wind directions, and 𝑁𝑢is the 

number of distinct wind speeds in the grid Θ𝑡𝑟𝑢𝑡ℎ; the expected value 𝐸𝑗,𝑘[⋅] is taken from the 𝑗𝑡ℎ wind 

speed and the 𝑘𝑡ℎ wind direction; the factor 𝐻𝑝𝑌 is the hours per year to convert into energy units and the 

function 𝑓(⋅,⋅) is the probability distribution of wind speeds and directions given by the site wind source 

specifications (wind rose or Weibull distribution information). 

1.1.3 Results 

The calculations described above are applied to the reference farm for the flowing distinct scenarios: 

Scenario 1 is the baseline case that uses greedy controls with no intentional yaw steering, Scenario 2 that 

represents the best wake steering that could be achieved without radar measurements, and Scenario 3 

where Radar measurements are used. For all calculations it is assumed that the true wind field satisfies 

Model (1) using the Gauss-Curl-Hybrid (GCH) model [9] as described in §4.1. The measurement 

uncertainties for the non-Radar scenarios use the information from Table 2. 

Scenario Sensor 

Accuracy 

2a 

Low 

2b 

Medium 

2c 

High 

𝜎𝛽 8 deg 6.4 deg 4 deg 

𝜎𝑈 1.5 m/s 1.2 m/s 0.75 m/s 

𝜎𝑃 0.24 MW 0.12 MW 0.10 MW 
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Table 2: Measurement uncertainty for non-radar sensors 

 

In addition, for the Radar-based cases we consider that the sensor equipment can measure speed with an 

accuracy of 0.3 m/s. 

The resulting statistics of the estimated parameters are summarized in Table 3. 

Sensor Set Scenario Mean Std. Dev. No convergence [%] 

Standard 2a 3.40 3.05 55.4 

Standard 2b 3.25 2.93 53.3 

Standard 2c 2.75 2.70 47.8 

Radar 3 1.00 0.08 0.1 
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Table 3: Statistics of the wake parameter 𝑘𝑎/𝑘𝑎
0. 

 

Note that failure to converge is attributed to the combination of an ill condition optimization problem with 

the error in the numerical calculation of the Jacobian matrices while solving Eq. (5). On the other hand, 

Scenario 3, where the Radar is considered, the convergence of the optimizer is improved significantly, 

and the standard deviation of the estimated expansion coefficient is greatly improved. Furthermore, 

representative power gain statistics for the above scenarios are shown in . The base line corresponds to 

Scenario 1, the “True Optimized” case corresponds to the solution of (5) assuming Θ𝑡𝑟𝑢𝑡ℎ is known, the 

non-radar case corresponds to Scenario 2, and the Radar case to Scenario 3. For this setting, the non-radar 

Scenario 2 shows an average power gain of 14%. However, these gains have significant variability 

evidenced by a range between 4% to 27% corresponding to the first and third quartiles (box plots in Figure 

5). In contrast, the radar case (Scenario 3) has a very consistent gain of 32% with a standard deviation of 

less than 0.1%. For the estimation cases that did not return consistent results, we used the average wake 

parameters over the distribution of successful estimates only. In this way, the yaw optimization can be 

performed for all non-Radar-based scenarios, even when the corresponding estimation problem fails. 

 

 

Figure 5: Normalized power 𝑃/𝑃1 obtained with different scenarios for wind direction 𝛽 = 0 and speed 𝑈∞ =
10𝑚/𝑠. 
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2 Levelized Cost of Energy 

The LCOE is the fundamental metric used to evaluate the viability of the proposed technology. The 

baseline cost (Scenario 1) is given by [10]. It measures the cost of producing electrical power ($/MWh) 

for a given wind farm. The baseline cost (Scenario 1) is given by  

 

𝐿𝐶𝑂𝐸1 =
𝐶𝑡𝑅 + 𝑂𝑡

𝐴𝐸𝑃̅̅ ̅̅ ̅̅
 7 

 

where 𝐶𝑡 represents the capital expenditure of the turbine, R the fixed charge rate, and 𝑂𝑡 the turbine 

operating costs. The cost for Scenarios 2 and 3 (Table 2) are given by 

 

𝐿𝐶𝑂𝐸2 =
𝐶𝑡𝑅 + 𝑂𝑡

𝐴𝐸𝑃̅̅ ̅̅ ̅̅ (1 + 𝐺2)
 8 

𝐿𝐶𝑂𝐸2 =
(𝐶𝑡 + 𝐶𝑟)𝑅 + 𝑂𝑟 + 𝑂𝑡

𝐴𝐸𝑃̅̅ ̅̅ ̅̅ (1 + 𝐺3)
 9 

 

where 𝐺𝑗 is the AEP gain for the 𝑗𝑡ℎ Scenario obtained from wake controls, and the sub-index 𝑟 stands for 

radar system. The radar costs are pro-rated on a per-turbine basis. The cost 𝐶𝑟 considers components such 

as the antenna, transmitter, radome, and pedestal. The cost 𝑂𝑟 includes elements like calibration and 

component replacement costs. The AEP gains and LCOE reductions obtained from wake steering 

solutions with respect to the baseline are summarized in Table VII, which show that the radar-based wake 

steering could reduce the LCOE by more than 1.18 % with respect to wake steering without remote 

sensing. 

 

Scenario AEP Gain [%] Std. Dev. (AEP Gain) LCOE Reduction [%] 

2a (no Radar) 1.08 3.4𝑥10−3 0.54 

2a (no Radar) 1.44 5.3𝑥10−3 1.30 

2a (no Radar) 2.71 5.4𝑥10−3 1.71 

3 (Radar) 4.22 7.3𝑥10−3 2.89 

Table 4: Summary of AEP and LCOE results. 
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3 Radar Design 

Under this effort, Helios studied multiple radar configurations: X-band (10 GHz), Ka-band (35 GHz), W-

band (95 GHz) and S-band (3.2 GHz).  The X-band, Ka-band, and W-band radars were designed to 

exploit moisture levels down to -37.5 dBZ.  However, each of these radar frequencies cannot adequately 

sense clear air, and thus we proposed using an S-band radar which can sense condensed moisture down to 

the −37.5 dBZ level and, in addition can sense Bragg scattering due to clear air refractivity. 

 

The first system studied was X-band which required a large antenna and a klystron power source.  X-band 

also does not detect clear air adequately. The second radar configuration studied was a magnetron based, 

35 GHz system with a Cassegrain antenna. The magnetron is not sufficiently reliable, the dBZ response 

level is not high enough at 35 GHz and the system was large enough to require a radome. The third 

system studied was a Klystron based, 95 GHz system, also with a Cassegrain antenna. This radar was 

small enough and reliable enough but the clear air dBZ reflectivity still would not be detectable, even at 

95 GHz. The final system studied was an S-band radar system using an active electronically scanned 

antenna (AESA), which meets all requirements. The four systems studied plus a typical Lidar, for 

comparison/reference, are outlined in the following table. 

 

Type of sensor Lidar Rayleigh scattering 

radar (dBZ) 

Refractivity/Bragg 

radar (Cn
2) 

Frequency 1.6 microns System 1 – 10 GHz 

System 2 - 35 GHz  

System 3 - 95 GHz  

System 4 - S-band  

Target description Aerosols and 

refractive index 

(Clear air) 

Dominant - dBZ 

particle scattering 

based on insects, 

condensed moisture 

(clouds and fog) 

Secondary - Refractive 

index due to 

turbulence/eddies 

Dominant - Refractive 

index due to 

turbulence/eddies 

Secondary – dBZ 

based on insects, 

clouds and fog 

Detection performance Scattering 

coefficient 

3.5 km @ -37.5 dBZ 7.4 km  @ Cn
2 = 10-14 

Unfavorable 

conditions 

Haze, clouds or fog Clear air No refractive index 

gradients such as no 

turbulence 

Equipment size Smallest Medium/large  Largest 

Size of aperture 5 inches lens System 1 – 2.5 m 

System 2 - 1.2 m 

System 3 – 0.44 m 

3.1 m at S-band 

Scanning mechanism 360 Deg Az with El  

mechanical scan 

+/- 45 Deg Az with El  

mechanical scan 

+/- 45 Deg Az and El 

E-scan 

Average Tx power Less than 1 watt System 1 – 6.2 kw 10 kw 
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level System 2  - 40 watts 

System 3  - 100 watts 

Power source IR Laser System 1 - Klystron 

System 2 - Magnetron 

System 3 - Klystron 

Solid state 

transmit/receive (T/R) 

modules 

Antenna Lens Cassegrain reflectors AESA Array 

Reliability Very good but lens 

can become 

occluded due dirt 

and salt spray 

Tube is a single point 

of failure; similarly 

with  positioner 

Highest: Multiple 

element array creates a 

soft fail system for 

graceful degradation 

Cost Least expensive Expensive Most expensive 

Relationship to this 

effort 

Out of scope 95 GHz is good choice 

if combined with a 

Lidar for 

complimentary 

coverage in clear air 

Best radar only option 

for standalone sensor: 

Exploits both Cn
2 and 

condensed moisture in 

the atmosphere. 

Table 5: Comparison of different sensing technologies and physics exploited for each of them. 

 

A comparison of the detection performance in clear air of the four radar bands considered is shown in 

Figure 6.  As can be seen, S-band clearly outperforms the other three radar bands in clear air where 

detection is dependent upon Bragg scattering. 

 

 

Figure 6: Clear Air Detection Performance for Four Radar Bands Considered 
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The S-band aperture, which is 3.1m x 3.1m, is considered too large for mechanical scanning, so an 

electronically steered AESA has been chosen for the antenna. Elevation element sub-arraying was 

considered to reduce the number of T/R modules but subarraying interfered with the formation of very 

low -60 dB sidelobes. The 60 dB sidelobes are necessary to avoid loss of coverage due to range 

desensitizing annuli created by other turbines in the antenna’s sidelobes.  A summary of the S-band 

AESA radar system parameters is shown in Table 6. 

 

Parameter   Value   Comment 

Transmit frequency   2.9 GHz - 3.5 GHz   S-band AESA 

Architecture   2D Phased scanned array     Fixed location 

Element spacing   
λ /2 at 3.5 GHz azimuth and 

elevation 
  Steer ± 45° azimuth and elevation 

Number of elements   72 azimuth x 72 elevation    5,184 elements total – square array 

Beamwidth (one way)   1.98°   
Azimuth and elevation resolution is 

1.4° based on two-way beamwidth 

Azimuth and elevation voxel at 3.5 

km 
  85 at 3.5 km range    

Voxel size proportional to range 

(before interpolation) 

Bandwidth    
1.5 MHz (nominal) 

Software defined 

  
Range spacing: 100 m (nominal, 

before interpolation) 

 
Scan volume  45° Az x 45° El  

6 bit phase shifters and 6 bit 

attenuators on Tx and Rx 

Scan time (typical)  20 seconds (single 90° bar)  Adjustable scan times 

Peak / average Tx power of array   104 kW / 10.4 kW    10 % duty cycle 

Peak power of T/R module   20 W / 5 W / 0.5 W  peak   
Single MMIC power amplifier per T/R 

gated at 10% duty 

Array Size (W x H)   3.1 m x 3.1 m    Directivity: 42.1 dBi 

Sidelobes   -60 dB relative to peak gain  ~-18 dBi 

Table 6.  S-band AESA Radar System Parameters 
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Multiple configurations of the radar sensors, radar mountings, and radar distributions around the farm 

have been considered. Nacelle mounted radars, scanning up to 360º azimuth, and a combination of nacelle 

mounted (rear scanning) and sea level tower platform radars (240º scanning) have also been considered.  

 

3.1 Horizontal 𝑪𝒏
𝟐  Measurements 

Radars operating at S-band, i.e., 3.2 GHz, straddle two principal scattering regimes depending on the 

atmospheric conditions.  Under “clear air”, i.e., nonprecipitating, bioscatterer-free conditions, most 

scattering is in the Bragg regime, which is governed by the equation: 

η ≈ 0.379Cn
2λ-1/3  10 

where: 

η is reflectivity 

λ is the radar wavelength 

𝐶𝑛
2 is the structure parameter for the refractive index n 

 

Radar backscatter can occur when the spatial scale of turbulent eddies probed by the radar is half of the 

radar wavelength.  That is, the radar wavelength is Bragg matched to the spatial scale of the eddies.  For 

example, the 10 dm wavelength of an S-band radar would detect turbulent eddies with the size of about 5 

cm.   

The proposed S-band radar system is based on the refractive index structure parameter, 𝐶𝑛
2.  It is a 

measure of the difference in the index of refraction over a distance.  Within the inertial-subrange of the 

atmospheric turbulence spectrum, the refractive index structure parameter, 𝐶𝑛
2, is defined as [11]: 

𝐶𝑛
2 = 

[𝑛′(0) − 𝑛′(𝑟)]2

𝑟2 3⁄
 11 

 

where n′(0) and n′(r) are the turbulent fluctuation values of the index of refraction, n, at two points 

separated by a distance r along the mean wind direction and the overbar denotes an ensemble average. 

𝐶𝑛
2 consists of two major components:   

1.  That due to changes in the refractive index in the vertical direction resulting from gravity influence on 

air density as a function of height, Cn
2 gravity gradient, and  

2. That due to turbulence, Cn
2 Turbulence 

Cn
2 = Cn

2 gravity gradient + Cn
2 Turbulence 12 
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Gravity causes the density of the atmosphere to vary in the vertical direction and can be readily calculated 

as shown in Table 7.  This calculation is based on the gradient of the index of refractive index versus 

altitude using a 0.1 m altitude delta in the above formula for 𝐶𝑛
2. This is a wavelength at S-band.  At the 

altitude of interest, 200m, 𝐶𝑛
2 is equal to 8.8 E10-17. 

 

Range/ 

Height 

(m) 

Frequency 

(GHz) 

Delta R 

(m) n lower n upper Cn
2 

Reflectivity 

(dBsm/m3) 

Range 

bin (m) 

2-way 

Beamwidth 

(Deg) 

Volume 

RCS 

(dBsm) 

20 3.0 0.100 1.0003121007 1.0003120962 9.358E-17 -162.16 100 1.4 -149.4 

200 3.0 0.100 1.0003041227 1.0003041183 8.885E-17 -162.39 100 1.4 -129.7 

1000 3.0 0.100 1.0002710608 1.0002710569 7.058E-17 -163.39 100 1.4 -116.7 

10000 3.0 0.100 1.0000742623 1.0000742612 5.298E-18 -174.63 100 1.4 -107.9 

100000 3.0 0.100 1.0000000002 1.0000000002 3.296E-29 -286.70 100 1.4 -200.0 

Table 7.  Computed 𝐶𝑛
2 gravity gradient 

 

Research and measurements of 𝐶𝑛
2 show values which include 10-14 [11]–[14], indicating that the 

turbulence component of 𝐶𝑛
2 is the dominant factor.  It exceeds the gravity gradient component by 3 

orders of magnitude.  

Having established the dominance of the turbulent component of 𝐶𝑛
2, the spatial characteristics of 

turbulence is important because the radar system will be measuring 𝐶𝑛
2 in the horizontal plane.   

Turbulence is an irregular motion of the air resulting from eddies and vertical currents, and causes small-

scale, irregular air motions characterized by winds that vary in speed and direction [14], and thus has 

components in all three spatial dimensions.  This is evident from reference [11] which performed 𝐶𝑛
2 

along a horizontal path.  Horizontal measurements of the proposed radar system should be adequate 

therefore to measure and rely upon 𝐶𝑛
2. 

3.2 Radar Locations within the Wind Farm 

The two most promising radar locations within the wind farm are illustrated in Figure 8 and  

Figure 9.  Figure 8 illustrates an eight (8) radar architecture where all eight radars are mounted on service 

platforms attached to the tower.  
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Figure 9 illustrates a four (4) radar architecture, where all radars are mounted on or near a service 

platform. The results show that all wind turbines will be covered by at least one radar, which much of the 

wind farm area is covered by two or more radars.  Due to the blockage of the turbine tower, the lower 

platform mounted radar will have areas of non-coverage which reduces the amount of triple radar 

coverage when compared to a 360˚ rotating nacelle-mounted antenna. For this reason, we propose that the 

8 radar configuration be used for the study. 

 

 

Figure 8.  Baseline Location of 8 Radars 

 

 

Figure 9.  Baseline Location 4 Radars



 
 

4 Estimation of Wake Parameters 

In §1.1.1 we introduced a Least Squares (LS) approach to estimate the wake model parameters for the 

quantification of uncertainty in the LCOE analysis. However, the LS approach is not suitable for online 

estimation, instead a recursive solution of the estimation problem is recommended [15], [16]. Therefore, 

in this section we will describe how we implemented an algorithm for online computation of the wake 

model parameters that is suitable for online applications that makes use of the Radar measurements. In 

Figure 10 we show the flow of data between the various components of the system for wake management. 

The parameter estimator block requires the measurements coming from the radar system and the currently 

available sensors in the farm. It combines these with a mathematical model of the wind flow within the 

farm to estimate the necessary parameters of said model to better predict the size and location of the 

wakes.  In order to predict the behavior of the wakes and how these are affecting the downstream turbines 

we make use of FLORIS, a wind farm state-of-the-art modelling environment [6]. FLORIS consists of 

steady-state analytical wake models derived from time-averaged RANS (Reynolds-Averaged Numerical 

Simulation) equations that is used primarily to estimate AEP. Furthermore, we chose the Gauss Curl 

Hybrid model that combines the Gaussian model [17], [18] and a simplification from the curl model [9], 

[17] to better predict the behavior of the wakes under yawed conditions. In the following sections we 

describe the wake model in more detail and the implementation of the estimation framework that uses the 

model to compute updated model parameters using the radar measurements. 

 

Figure 10: Process diagram describing the flow of information between the different components. 
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4.1 Gauss Curl Hybrid Wake Model 

Recall that the Gaussian wake model is based on the analytical solutions to the linearized Navier-Stokes 

Equation where the wake deficits are computed assuming a Gaussian wake form, then the stream-wise 

aligned velocity 𝑢(𝑥, 𝑦, 𝑧) [9], [17] is given by 

𝑢(𝑥, 𝑦, 𝑧) = 𝑈∞ [1 − 𝐶𝐺𝐶𝐻  (𝜎𝑦, 𝜎𝑧,  𝑐𝑡, … )𝑒

−(𝑦−𝑦0−𝛿(⋅))
2

2𝜎𝑦
2

𝑒
−(𝑧−𝑧ℎ)2

2𝜎𝑧
2

]   13 

 

and where 𝑈∞ is the only U-component vector of the freestream velocity averaged over the rotor disk 

plane, 𝐶𝐺𝐶𝐻 is the velocity deficit at the wake center: a function of the wake widths in the y and z 

directions (𝜎𝑦 and 𝜎𝑧, respectively), and thrust coefficient (𝑐𝑡), among other variables. The wake 

deflection is given by 𝛿(𝑥0, 𝜎𝑧, 𝜎𝑦, 𝑐𝑡 , 𝑘𝑦, 𝑘𝑧), and 𝑧ℎ is the hub height. These parameters are defined as 

follows: 

𝜎𝑧 = 𝑘𝑧(𝑥 − 𝑥0) + 𝜎𝑧0;        𝜎𝑧0 =
1

2
√

𝑢𝑅

𝑈∞ + 𝑢0
  14 

𝜎𝑦 = 𝑘𝑦(𝑥 − 𝑥0) + 𝜎𝑦0;           𝜎𝑦0 = 𝜎𝑧0 cos 𝛾 cos 𝜃   15 

𝛿 = 𝑥0 tan 𝜃 + 𝛿𝑓(𝑥0, 𝜎𝑧, 𝜎𝑦, 𝑐𝑡 , 𝑘𝑦, 𝑘𝑧);     𝑥0 =
𝐷 cos𝛾(1 + √1 − 𝑐𝑡)

√2[4𝛼𝑇𝐼 + 2𝛽(1 − √1 − 𝑐𝑡)]
 16 

 

where 𝑥0 is the start of the region where velocity reaches self-similarity, 𝛼 = 2.32 and 𝛽 = 0.154 are 

used by default and could be estimated. Also, the expansion coefficients are represented with an empirical 

relationship with the turbulence intensity (TI) 

 

𝑘𝑧 = 𝑘𝑦 = 𝑘𝑎𝑇𝐼 + 𝑘𝑏   17 

 

with recommended values 𝑘𝑎 =  0.383 and  𝑘𝑏 = 0.004. Furthermore, the model incorporates the effects 

of vortices being shed by the turbine rotors. These effects are added to the streamwise (𝑉) and vertical 

(𝑊) velocities such that the total velocities are: 

 

𝑉𝑤𝑎𝑘𝑒 = 𝑉𝑡𝑜𝑝(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) + 𝑉𝑏𝑜𝑡𝑡𝑜𝑚(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) + 𝑉𝑤𝑎𝑘𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) 

𝑊𝑤𝑎𝑘𝑒 = 𝑊𝑡𝑜𝑝(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) + 𝑊𝑏𝑜𝑡𝑡𝑜𝑚(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) + 𝑊𝑤𝑎𝑘𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑦, 𝑦0, 𝑧, 𝑧ℎ , 𝐷) 
18 
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where detailed expressions for these functions can be found in [9]. 

This model represents the behavior of the wind velocity in the wakes downstream of the turbines. There 

are some parameters that were originally obtained from fitting models to wind tunnel experiment data, 

and that will benefit from being updated from measurements from the wind farm. These parameters are 

summarized in Table 8. 

 

Parameter 𝑈∞ 𝜑 𝑘𝑦 = 𝑘𝑧 , 𝑘𝑏 𝛼,𝛽 

Description Undisturbed 

wind velocity 

Undisturbed 

wind direction 

Wake growth 

coefficients 

Start of near wake deflection 

region coefficients 
Table 8: Model parameters that can be estimated from measured data in the farm. 

 

4.2 State and Parameter Estimation 

In this section we discuss the methods used for the estimation of parameters for the model defined in §4.1. 

There are many approaches available for solving the estimation problem, in the context of process 

control, Bayesian estimation is a suitable approach that provides several computationally efficient 

methods [19], [20]. Bayesian estimation combines prior known information about the estimated quantities 

and combines it with new measurement information and a model to generate the current estimated value. 

These methods are widely used in process systems for state and parameter estimation [15], [16]. One of 

the most widely known approaches is the so-called Kalman Filter (KF) [21] from which many other 

methods are derived (e.g., for their use with nonlinear systems [15]). The most widely used extension of 

the KF for nonlinear systems is the Extended Kalman Filter (EKF). This approach makes use of the 

linearization of the dynamic model. The nonlinear stochastic model assumed here is given by  

𝑥𝑘 = 𝐹(𝑥𝑘−1, 𝑢𝑘) + Γ𝑘𝜔𝑘 19 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) + 𝜈𝑘 20 

 

where the sub-index 𝑘 represents the current time, 𝑥𝑘 , 𝑥𝑘 ∈ ℝ𝑛𝑥 are the estimated and predicted state 

vectors, respectively, 𝑦𝑘 ∈ ℝ𝑛𝑦 is the estimated measurement vector, 𝜔𝑘 ∈ ℝ𝑛𝜔 and 𝜈𝑘 ∈ ℝ𝑛𝜈 represent 

uncorrelated zero-mean Gaussian variables associated to the model and outputs, respectively. Note, that 

without loss of generality we can assume that 𝑛𝜔 ≤ 𝑛𝑥, meaning that not all states must have random 

variables associated to them, and the matrix Γ𝑘 is used to assign the random variables to their 

corresponding state. Furthermore, the random variables are modelled as 𝜈𝑘~Ν(0, 𝑅𝑘) and 𝜔𝑘~Ν(0,Qk), 

where 𝑅𝑘 and 𝑄𝑘, are covariance matrices of appropriate dimensions, and they quantify the uncertainty 
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associated with the measurement equipment and the model, respectively. Additionally, the EKF does a 

model prediction of the covariance of the estimated states using the expression below 

𝑀𝑘 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + Γ𝑘𝑄𝑘Γ𝑘

𝑇 21 

 

where 𝑀𝑘 represents the prior covariance or covariance of the predicted states, and 𝑃𝑘 is the posterior 

covariance (after the measurement update). The matrix 𝐴𝑘 here is the Jacobian matrix of the nonlinear 

system defined in Equation (19), that is the matrix of first derivatives of the model with respect to the 

states. Finally, when the new set of measurements becomes available the predicted states are updated 

using 

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘(�̅�𝑘 − 𝑦𝑘) 22 

𝑃𝑘 = 𝑀𝑘 − 𝐾𝑘𝐶𝑘𝑀𝑘, 23 

 

where  �̅�𝑘 is the new set of measurements, 𝑃𝑘 is the covariance of the posterior distribution associated 

with the state estimates, 𝐶𝑘 is the Jacobian of the measurement prediction model (Eq. (20)), and 𝐾𝑘 is the 

so-called Kalman Gain matrix defined as 

𝐾𝑘 = 𝑀𝑘𝐶𝑘
𝑇(𝐶𝑘𝑀𝑘

−1𝐶𝑘
𝑇 + 𝑅𝑘) 24 

 

However, due to the nature of the models being used, and the discontinuities present in it we choose to 

use the Unscented Kalman Filter (UKF) [22], [23]. This is a variant of the EKF that evaluates the model 

in a set of points, called sigma points, to generate a set of predicted states and measurements, and then 

computes the weighted mean and covariance of said points to estimate the states. As such, for the set of 

sigma points we propagate the states and compute weights as follows 

𝒳𝑘−1,𝑖 = 𝑥𝑘−1 + (√(𝑛𝑥 + 𝜆)𝑃𝑘)
𝑖
, 𝑖 = 1,… , 𝑛𝑥 25 

𝒳𝑘−1,𝑖 = 𝑥𝑘−1 − (√(𝑛𝑥 + 𝜆)𝑃𝑘)
𝑖
, 𝑖 = 𝑛𝑥 + 1,… , 2𝑛𝑥 26 

𝑊0
𝑚 = 𝜆/(𝑛𝑥 + 𝜆) 27 

𝑊𝑜
𝑐 = 𝜆/(𝑛𝑥 + 𝜆) + (1 − 𝛼𝑢

2 + 𝛽𝑢) 28 

𝑊𝑜
𝑚 = 𝑊𝑖

𝑐 = 1/(2(𝑛𝑥 + 𝜆)) 29 
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where 𝜆 = 𝛼𝑢
2(𝑛𝑥 + 𝜅) − 𝑛𝑥 is a scaling parameter, 𝛼𝑢 controls the spread of the sigma points around the 

previous estimate (𝑥𝑘−1), and is usually set to a small positive value, and 𝜅 is a secondary scaling 

parameter usually set to 0, and 𝛽𝑢 is used to incorporate prior knowledge into the distribution of the states 

[22]. The sigma points are propagated forward in time using Eq. (19), this produces the set of current 

predicted states (𝒳𝑘) and measurements (𝒴𝑘) at the sigma point locations. Then, the mean ( �̃�𝑘) and 

covariance of the predicted measurement (𝑃𝑦𝑦) are approximated using a weighted sample approach as 

�̃�𝑘 ≈ ∑𝑊𝑖
𝑚𝒴𝑘,𝑖

2𝑛𝑥

𝑖=0

 30 

𝑃𝑦𝑦 ≈ ∑𝑊𝑖
𝑐(𝒴𝑘,𝑖 − �̃�𝑘)

2𝑛𝑥

𝑖=0

(𝒴𝑘,𝑖 − �̃�𝑘)
𝑇
 31 

 

Similarly, the state prior mean and covariance are calculated using the weighted sample approach as 

follows 

�̃�𝑘 ≈ ∑𝑊𝑖
𝑚𝒳𝑘,𝑖

2𝑛𝑥

𝑖=0

 32 

𝑃𝑥𝑥 ≈ ∑ 𝑊𝑖
𝑐(𝒳𝑘,𝑖 − �̃�𝑘)

2𝑛𝑥
𝑖=0 (𝒳𝑘,𝑖 − �̃�𝑘)

𝑇
. 33 

 

When the new measurement becomes available the update is done using 

𝑃𝑥𝑦 ≈ ∑𝑊𝑖
𝑐(𝒳𝑘,𝑖 − �̃�𝑘)

2𝑛𝑥

𝑖=0

(𝒴𝑘,𝑖 − �̃�𝑘)
𝑇

 34 

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 35 

𝑥𝑘 = �̃�𝑘 + 𝐾𝑘(�̅�𝑘 − �̃�𝑘) 36 

𝑃𝑘 = 𝑃𝑥𝑥 − 𝐾𝑘𝑃𝑦𝑦𝐾𝑘 37 

 

where again we have the Kalman Gain (𝐾𝑘), the estimated states  𝑥𝑘, and the posterior distribution 

covariance 𝑃𝑘 at time k.  
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4.3 Estimation with Radar Measurements 

In this section we describe the use of the radar to measure wind velocities and their use as in the 

estimator. As a simplification, this implementation we assume that the radar is measuring wind velocities 

at a single altitude (hub height). As such, the Radar measures the radial component of the wind velocity as 

depicted in Figure 11, where the beam coming from the radar intersects the wind at an angle (𝜓), and the 

doppler measurement is the radial component of the wind velocity. Note, however, that the Radar system 

can measure at different altitudes, and the extension of the estimation algorithm can be easily done.  

 

Figure 11: Radial velocity measured from the radar system. 

 

Furthermore, the radar will produce measurements at different ranges within the beam and different 

angular locations across the scanned region. Thus, each radar within the system will produce a 

measurement for each range location and each beam, which for the current design of the system it means 

that it will generate over 36,000 measurements across various locations of the farm. However, for the 

estimator to process the measurements it is important to use a consistent Euclidean grid for the locations 

of the measurements. For this purpose we use py-ART [24], The Python ARM Radar Toolkit, developed 

by the US Department of Energy through the Atmospheric Radiation Measurement group. This tool 

allows us to map the radial measurements to a fixed grid that is common to all radars. For the estimation 

of the wake model parameters and wind velocity components within the farm, we also disregard the 

measurements outside of the farm. The possible measurement locations are shown in Figure 12, the four 

radars in the interior that look out produce measurements outside of the farm. These could potentially be 

used to get advanced warning of gusts or other adverse weather conditions. However, for the purposes of 

the wake estimator they are not taken into account. 



 

21 
 

 

Figure 12: Location of each measurement for all radars in the farm (green dots represent wind turbines, red crosses 

the radars). 

Because the separation between points within the fixed common grid being used is user defined, it can be 

considered a tuning parameter. The size of this mesh will directly affect the size of the measurement 

vector within the estimator (i.e., Equation 20), and it is therefore defined as follows: 

�̃�𝑘 =

[
 
 
 
 
 
 
 

�̃�1,1

⋮
�̃�1,𝑛𝑀1

⋮
�̃�𝑛𝑅,1

⋮
�̃�𝑛𝑅,𝑛𝑀𝑛𝑅 ]
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where 𝑛𝑅 is the number of radars,  �̃�𝑖,𝑗 is the measured radial velocity for the 𝑖𝑡ℎ radar and 𝑗𝑡ℎ grid 

location in the common Cartesian position, and 𝑖 = 1,… , 𝑛𝑅 and 𝑗 = 1,… , 𝑛𝑀𝑖
 and 𝑀𝑖 is the total number 

of measurements produced by radar 𝑖. 

The dynamic model defined in Equation (19) is composed is defined by a random walk model for the 

parameters which is common practice for systems with unknown dynamics [25]. If the vector of 

parameters (Θ𝑘) is composed by the undisturbed wind direction and velocity, the wake expansion 
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coefficient (𝑘𝑦), and 𝛼 for the start of the far region of the wake that affects the deflection of the wake, 

then the random walk model is 

Θ𝑘+1 = Θ𝑘 + 𝜔𝑘 = [

𝜑𝑘

𝑈∞,𝑘

𝑘𝑦

𝛼𝑘

] + [

𝜔𝜑,𝑘 
𝜔𝑈∞,𝑘

𝜔𝑘𝑦,𝑘

𝜔𝛼,𝑘 

]. 39 

 

To compute the predicted measurements in Eq. (38), we take the wind velocity components calculated by 

Floris at the fixed grid locations defined above and compute the predicted radial velocities. This easily 

done because the radar positions are fixed, and we know the beam locations and ranges at which the radar 

is measuring. Thus, the nonlinear output model 𝐻(𝛾, Θ), is the sensor model that combines the Floris 

outputs and radial velocity calculations and produces the output array 𝑦𝑘 defined as 

𝑦𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑉1,𝑘

𝑅1

⋮

𝑉𝑛𝑀1
,𝑘

𝑅1

𝑉𝑛𝑀𝑛𝑅
,𝑘

𝑅𝑛𝑅

⋮

𝑉𝑛𝑀𝑛𝑅
,𝑘

𝑅𝑛𝑅

𝑃1,𝑘

⋮
𝑃𝑛𝑇,𝑘

𝑤1,𝑘

⋮
𝑤𝑛𝑇,𝑘 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 𝐻(𝛾, Θ𝑘−1) + 𝜈𝑘. 40 

 

where the outputs are the predicted 𝑖𝑡ℎ  radial velocity for the 𝑗𝑡ℎ radar (𝑉𝑖,𝑘
𝑗

), the power generated by the 

𝑖𝑡ℎ turbine (𝑃𝑖,𝑘), and its rotor speed (𝑤𝑖,𝑘).  

As described in §3 there are 8 Radars providing 8 sets of measurements: 4 from the radars in the outside 

perimeter and 4 from the inner radars. These measurements are represented in Figure 12, where we see 

that measurements overlap providing multiple sensor coverage in different parts of the farm. These 

measurements are considered in a simulation test case depicted in Figure 13 where we simulated some 

changes in the estimated parameters to demonstrate that the UKF can track them. In this figure we show 
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the trajectory of the  nominal or reference parameters in the dashed blue line. In red, the estimated 

parameter if the grid locations for the measurements are at every 185 m, and in yellow if they are located 

every 256 m. Note that in these scenarios the UKF can track the parameters with low estimated errors. For 

example, the growth rate average error is below 5%, while the error for wind velocity and direction is 

below 1%. 

  

  

  
  

Figure 13: Estimated growth rate, wind direction and wind velocity, and their relative errors compared to Scenario 1 

for two mesh size cases. 

 

Furthermore, the additional measurements, i.e., when these are located every 185 m produces tighter 

estimated parameters (smaller variance) and lower average error. However, this difference may not be 

significant enough to justify the need for a larger measurement array, and thus more CPU power to 

compute the Kalman Gain (Eq. (35)).  
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5 Yaw Optimization Algorithms 

Farm-based yaw optimization algorithms have been developed to help improve the overall farm 

performance. An alternative to farm-based yaw optimization—“greedy” yaw optimization, where every 

turbine’s individual control strategy is to optimize its own performance—does not penalize upstream 

turbines for directing wakes at downstream turbines. It is understood (e.g., [26]) that “greedy” 

optimization is sub-optimal. 

In this section, yaw optimization strategies, including methods incorporating clustering, Serial Refine 

(SR) optimization, and SLSQP-based optimization are demonstrated. FLORIS simulation results are 

provided showing all attempted yaw optimization techniques provide similar and significant total farm 

power production increases over greedy optimization. Improvements in timing are shown for the SR 

algorithm and clustering approaches. Finally, the potential for farm based improvement in a dynamic 

simulation environment are confirmed use LES simulations. 

5.1 Farm Clustering 

The clustering approach being used is based on the algorithm by Shu et al. [27]. This approach attempts to 

sub-divide a farm into smaller groups to decrease the complexity and order of the yaw-optimization. In 

this approach, a digraph is created based on determining the wake influence between all combinations of 

turbines. The digraph is then pruned using a threshold to remove less significant edges. Leading turbines 

are identified. Vertices (turbines) that are shared by multiple clusters (are connected to multiple leading 

turbines) are evaluated for strength of connectivity to clusters and maintained by the strongest cluster.   

 

The first step of a clustering approach is computing the wake influencing matrix. This matrix defines the 

wake coupling between individual turbines. To compute the matrix, one can take an approach similar to 

the one used in [27] where the use of the Jensen wake model was done to create analytical expressions 

that would fill the elements of the influencing matrix. However, we preferred to use the GCH model to 

create this matrix. Thus, to compute the wake-influencing matrices, we made modifications to the 

procedure to leverage FLORIS more heavily. This step can however be made more efficient by creating 

the analytical expressions similar to the paper above. In this procedure, the wind velocities were sampled 

at the rotors (from the FLORIS outputs) using a 21 point disc quadrature [28] and projected onto a vector 

normal to the rotor plane (show in Figure 14).  
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Figure 14: Area of wake interaction in the downstream turbine. 

The quadrature formula allowed obtaining an average wind velocity and check the impact of the wake 

from any given turbine on the other one. This is accomplished by subsequently creating FLORIS wind 

farms with pair of turbines of interest. E.g., one can compute the velocities 𝑣∞ = ∫ �⃗� 
𝑅𝑜𝑡𝑜𝑟1

∙ 𝑑𝐴  and 𝑣2 =

∫ �⃗� 
𝑅𝑜𝑡𝑜𝑟2

∙ 𝑑𝐴 , thereby allowing computing a wake velocity deficit at the trailing turbine: 

𝑑𝑒𝑓𝑖𝑐𝑖𝑡 =
𝑣 ∞ − 𝑣2

𝑣∞
 

Each calculated deficit is entered into the row and column of the wake influencing matrix. 

Examples of wake influencing matrices are shown in Figure 15. As would be expected from the wake 

deficit formula, the diagonal entries where turbine 1 is turbine 2, is zero. For 0˚, one can notice eight 

triangular patterns due to each column of turbines being independent. Note that the other demonstrated 

examples are more complicated due to the wake coupling being more complex. 
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Figure 15: Illustration of the calculated wake intensity matrix for 7 m/s. Shown for wind directions of 0˚ (top left), 

15˚ (top right), 30˚ (bottom left), and 45˚ (bottom right), calculated at 7 m/s. 

 

The wake influencing matrix can be converted into a digraph for visualization (Figure 16). Note that the 

wake intensity matrix can be initially pruned based on a threshold. Next, for each turbine (graph vertex), 

the weighted in-degree centrality is computed. The lead turbines are identified as the graph vertex with a 

weighted in-degree centrality of zero. The strength of connections to lead turbines is used to prune edges 

between vertices such that turbines only belong to a single lead turbine. Figure 17 shows pruned digraphs. 
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Figure 16: Turbine wake digraphs. Lead turbines are shown in blue. Shown for wind directions of 0˚ (top left), 15˚ 

(top right), 30˚ (bottom left), and 45˚ (bottom right), calculated at 7 m/s.  
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Figure 17: Pruned farm digraphs. Note that each lead turbine (in blue) has its own cluster. Shown for wind 

directions of 0˚ (top left), 15˚ (top right), 30˚ (bottom left), and 45˚ (bottom right), calculated at 7 m/s. 

 

5.2 Optimization Implementation 

The clustering algorithm in the previous subsection found groups of closely wake-coupled turbines. The 

clusters were theorized to reduce the farm dimensionality to allow yaw optimization algorithms to 

perform more quickly. To test this hypothesis, yaw optimization was performed the farm using four 

methods: (1) Serial Refine (SR) Optimization, (2) SLSQP Optimization, (3) Clustering with SR 

Optimization, and (4) Clustering with SLSQP Optimization. 

 

Similar to the previous section, optimizations were performed over the range of wind directions from 0 to 

45˚, over 5˚ increments. Wind speeds of 6, 7, 10, and 20 m/s were used for optimization. Farm power 

from the optimization is shown in Figure 18. Note that the outputted farm power is similar between the 

different yaw-optimization algorithms. However, there typically is significant improvement—

approximately an average of 10% improve over the baseline—with the exception at 20 m/s (Table 9). The 

baseline and the yaw-optimized farm powers are similar for 20 m/s because at this speed the turbines are 

already past the “knee” of the power curve and hence waking doesn’t significantly impact power 

production. 
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Figure 18: Yaw optimized power generation comparing different optimization algorithms applied to the 8x8 wind 

farm. Optimization was performed for wind directions between 0 and 45 deg, in 5 deg increments. Wind speeds of 6 

m/s (top left), 7 m/s (top right), 10 m/s (bottom left), and 20 m/s (bottom right) are provided. 

 

Wind 

Speed 

(m/s) 

SR SciPy SR+cluster SciPy+Cluster 

6 11.0 11.0 10.9 10.8 

7 10.0 10.0 9.8 9.8 

10 8.9 8.9 8.8 8.7 

20 0.1 0.0 0.1 0.1 
Table 9: Percent increase in average power (uniformly distributed wind direction) at the evaluated wind speeds for 

the yaw optimization algorithms over the baseline (no yaw). 

 

The individual yaw angles for the different optimization algorithms and wind speeds are shown in Figure 

19. Note that even though the overall power generated is similar between the optimization algorithms, 

there are some differences in the determined yaw angles. 
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Figure 19: Yaw angles shown for 7 m/s. Note that the turbine numbering corresponds to the turbine numbering in 

the digraphs in Figure 16 and Figure 17. Turbines are arranged in rows. 

 

In Figure 20, the FLORIS wake fields for the yaw found with the SR optimization are shown. 
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Figure 20: Calculated FLORIS farm wakes shown for 0 deg (top left), 15 deg (top right), 30 deg (bottom left), 45 

deg (bottom left) for 7 m/s wind speed. Yaw angles are shown were solved using the SR algorithm. 

 

Finally, the mean times for the different algorithms are provided in Table 10. The SR and SR+Clustering 

yaw-optimization algorithms are significantly faster than the algorithms using the SciPy gradient based 

algorithm. Further, the clustering reduces the total time when combined with the SR and SciPy algorithm 

in comparison to using the SR or SciPy algorithm on the entire farm. Additionally, it is notable that for 

the SR algorithm with clustering, the clustering component takes up approximately two-thirds of the time 

indicating improvements in the clustering algorithm could drastically decrease optimization time. 
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 SR SciPy SR+Cluster SciPy+Cluster 

Optimization 21.2 318.3 5.8 223.1 

Optimization + Initialization N/A N/A 6.7 223.9 

Clustering Calculation N/A N/A 13.0 13.5 

Total 21.2 318.3 19.7 237.3 
Table 10: Mean time in seconds for each optimization type. The rows are defined as follows: “Optimization” is the 

total time for calls to the SR or SciPy function; “Optimization + Initialization” includes an additional FLORIS 

initialization step; “Clustering Calculation” is the amount of time to perform the clustering algorithm to subdivide 

the farm into clusters and find the lead turbines; “Total” is the total time for the optimization. As expected, the 

“Total” time is consistent with the “Optimization” time for the SR and SciPy algorithms; it is also consistent with 

the sum of the “Optimization + Initialization” and the “Clustering Calculation” times. 

 

Note that variation in the times are shown using box and whisker plots in  

Figure 21 to Figure 23. Clustering time (Figure 22) is largely consistent across runs—which would be 

expected because the calculations are independent of the wind direction, wind speed, and algorithm.  

 

Figure 21: Box and whisker plot2 for the time spent in calls to the SR or SciPy based optimization, for an individual 

wind speed and direction, for each of the four optimization algorithms for the 8x8 farm. Statistics are performed on 

times from the 4 different wind speeds and 10 wind directions. 

 

2 Note y-axis is log- scaled. Box shows Q1, median (red), and Q3. The whiskers show Q1-1.5*IQR and Q3+1.5*IQR [29]. 
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Figure 22: Box and whisker plot2 for the time in calls to the clustering, for an individual wind speed and direction, 

for each of the four optimization algorithms for the 8x8 farm. Statistics are performed on times from the 4 different 

wind speeds and 10 wind directions. Note that unmodified SR and SciPy runs do not utilize clustering. Also, note 

that the variation in run time is small. 

 

Figure 23: Box and whisker plot2 for total optimization time, for an individual wind speed and direction,  for each of 

the four optimization algorithms for the 8x8 farm. Statistics are performed on times from the 4 different wind speeds 

and 10 wind directions. 

 

In this section we have done a few timing experiments to understand how the clustering algorithm 

benefits the optimization. In Table 10 (row 1), we show the optimization time for each approach (this is 

the time needed to solve the optimization for the full farm or the set of clusters) for each method. For the 

SR algorithm the benefits of clustering are clear, as the timing is reduced from 21.2 s to 5.8 s. This 

reduction in computational time could be made better if the clustering algorithm is made more efficient. 

For this, two approaches can be analyzed: (1) using the Jensen model can be used to generate an 

analytical solution to compute the influencing matrix, or (2) precomputing the clusters for various wind 
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velocities and directions and selecting the appropriate clustering for each combination online. An 

analytical solution for computing the clusters online is preferred because this approach eliminates errors 

from not having enough granularity in the selection of wind velocities and directions for precomputing 

the clusters. 
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6 Conclusions and Next Steps 

In this program we provide an assessment of Radar-based technology for the estimation of wake 

parameters and wake controls within off-shore wind farms. Since there were no commercially available 

Radars with the necessary requirements available, we conducted a preliminary design of a low-cost radar 

network to estimate performance and cost. Using the proposed sensing system, estimation algorithms 

were developed to calculate the wake characteristics and wind velocity components simultaneously 

online, and an optimization approach was developed to quantify the additional energy capture that can be 

obtained with realistic assumptions. To reduce the computational expense of solving a large greedy 

optimization problem to compute optimal yaw angles we implemented a clustering approach based on the 

Gauss-Curl Hybrid model. All studies correspond to a hypothetical 8 by 8 reference farm with 64 

turbines, which is representative of future farms off the US coast. Furthermore, the predicted LCOE 

calculations, evaluated using standard industry practices, indicate that the AEP benefits largely 

compensate the cost of the sensing system. LCOE reductions (with respect to the wake steering that uses 

the standard sensors) of at least 1.18% are expected, encouraging further development of the approach. 

Immediate future work in this field includes improvements of the estimation algorithms to handle variable 

measurement quality through the farm, enhancements in the optimization approach including structural 

loads considerations and increasing the numerical efficiency to make it suitable for real time 

implementation. Longer term research could also focus on a more integrated co-design process for 

sensors and wake controls. 
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