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Abstract

The distribution of the critically endangered North Atlantic right whale (Eubalaena glacialis)
overlaps with offshore wind lease areas along the U.S. Atlantic coast. Wind energy developers
are required to mitigate impacts to these animals. Informed mitigation requires an understanding
of the spatial and temporal distribution of right whales. Our research included nine tasks: 1)
develop predictive models of right whale distribution; 2) estimate uncertainty in right whale
predictions; 3) develop financial risk assessment scenarios; 4) determine the model’s ability to
forecast right whale distribution; 5) develop a commercialization/marketing strategy; 6) assess
financial risk; and 7) analyze economic tradeoffs; 8) develop a decision support framework; and
9) deploy a commercialization strategy. To complete these tasks, we built density surface models
that successfully predicted right whale distribution and estimated uncertainty in right whale
predictions. We identified tradeoffs between financial costs to renewable energy developers and
protected species conservation by coupling an offshore wind energy construction simulation with
our density surface model to quantify the number of right whales exposed to pile-driving noise
under ten financial risk scenarios, with costs assigned to each of the financial risk scenarios. We
then built an interactive prototype decision support app to demonstrate the tradeoff analysis, and
showcased the app at a stakeholder workshop attended by employees of Orsted and Equinor.
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Executive Summary

Renewable energy resources are a critical component of a low-carbon future. Offshore wind
energy plays a role in reducing our dependence on petroleum-based fuels, and thus reduces
emissions of greenhouse gases. Construction, operation, and decommissioning of offshore wind
energy projects is time-consuming and expensive; thus, extensive planning is required.

Numerous wind energy development projects are planned in U.S. Atlantic Coast waters. These
waters are inhabited by many species that could be impacted by the development of wind energy.
The distribution of the critically endangered North Atlantic right whale (Eubalaena glacialis),
hereafter right whale, overlaps with proposed wind energy development areas. The
Massachusetts/Rhode Island wind energy area (MA/RI WEA), the focus area for our project,
overlaps with a recently repatriated right whale habitat (O’Brien et al., 2022). Most scientific
studies on the impact of wind energy construction on marine mammals have taken place in
European waters and focused on small marine mammals. The effects of wind energy on large
whales (including right whales) are unknown (Kraus et al., 2019). Thus, an overarching objective
of our study is to develop a computational tool that will quantify the costs associated with
minimizing interactions between construction activities and right whales.

Throughout the project we simultaneously assessed the financial tradeoffs between right whale
mitigation measures and their conservation value while also developing a commercialization
strategy for a prototype tool that we developed allowing users to virtually interact with the
results of our tradeoff analysis. To assess the financial tradeoffs between right whale mitigation
measures and their conservation value we first built a density surface model (DSM) to predict
right whale density in the MA/RI WEAs. We used aerial survey data collected by the New
England Aquarium (NEAq) between 2011-2020 to fit the model. We used the DSM to estimate
the number of right whales exposed to sound levels associated with Level A and B takes during
pile driving activities under 10 mitigation scenarios. Mitigation scenarios included combinations
of Seasonal Restrictions and Additional Noise Attenuation Systems. Seasonal restrictions can be
used to shift construction activities to seasons when the least number of animals are predicted to
be present. Noise Attenuation Systems (e.g., the Big Bubble Curtains (BBC) and Double Big
Bubble Curtains (DBBC) considered here) reduce the radial distance that pile-driving noise
travels. We estimated the change in the predicted number of right whales exposed to sound levels
associated with Level A and B takes between each mitigation measure scenario and the Early
Start and Late Finish Seasonal Restriction scenario (hereafter “change in takes”) because this
scenario represents the longest period allowed for pile driving under a seasonal pile driving
restriction. We used the results of our tradeoff analysis to develop the R Shiny Decision Support
App prototype. This app was built to offer a user friendly and interactive tool to engage
interested parties with the key results of our tradeoff analysis.
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To develop a commercialization strategy for the decision-support tool prototype we focused on
utilizing pre-established experience, relationships, and platforms. After identifying the target
audience, we outlined a strategy for the utilization of social media, conferences, community
engagement, and infographics. We also presented our Decision Support App prototype to a
group of ten colleagues from Orsted and Equinor at a stakeholder engagement workshop. We
received valuable feedback during this workshop which we incorporated to further improve the

App prototype.
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Introduction

The distribution of the critically endangered North Atlantic right whale (Eubalaena glacialis)
overlaps with offshore wind lease areas along the U.S. Atlantic coast. In the last decade, right
whales have undergone widespread distribution shifts, abandoning some historically important
habitats and repatriating others (O’Brien et al., 2022). The timing of right whale occurrence in
these habitats has also shifted (Pendleton et al., 2022). These widespread changes in right whale
habitat use make predicting right whale occurrence at fine spatial and temporal scales difficult.
Even though predicting right whale habitat use is challenging, wind energy developers are
required to mitigate impacts to marine mammals. Informed mitigation requires an understanding
of the spatial and temporal distribution of right whales. Right whales are federally protected
under the Endangered Species Act and the Marine Mammal Protection Act (MMPA). Due to the
possible impacts of wind energy development construction activities on right whales, permitting
through Incidental Take Authorizations (ITA) and Incidental Harassment Authorizations (IHA)
are a necessary component of any offshore wind development along the U.S. Atlantic coast.
These permits exempt wind energy developers from a small number of Level B harassment takes
but developers must mitigate, monitor, and report on impacts to marine mammals.

One example of an offshore wind construction activity that could impact right whales is pile-
driving. Pile-driving is used to repeatedly strike a monopile turbine foundation with a hammer
until the monopile is secured to the seabed. As the hammer strikes the pile, some of this kinetic
energy is transferred into underwater noise which can injure the auditory system of right whales
within several kilometers of the pile.

Currently, right whale mitigation for wind energy development is informed by a combination of
density estimates (Roberts et al. 2016), historical monthly occurrence data, and real-time
monitoring (e.g., Cornell’s www.listenforwhales.org). Right whale density is currently estimated
at large spatial and temporal scales, and over the entire eastern seaboard. Estimates of density at
smaller spatial and temporal scales will likely be more useful for understanding the impacts of
wind energy development on right whales. Additionally, regional approaches to estimating
habitat use may provide more precise estimates because the drivers of right whale distribution
vary by habitat. Real-time monitoring can limit risks to whales that are detected while work is
underway. However, real-time monitoring only detects a portion of the whales that are present
and some whales will go undetected. In addition, mitigation measures that rely on real-time
monitoring are reactionary and do not help with planning development activities. Changes due to
scheduling delays can result in monetary losses for wind energy developers. Changes in right
whale distribution increase the risks associated with offshore development for both the whales
and wind developers.

Right Wind is a three-phase project, with the ultimate goal of developing a computational tool
and environmental compliance service that can be used to avoid or mitigate impacts to
marine protected species (such as right whales) and reduce financial risks to wind energy



developers. To achieve our ultimate goal, we initially developed ecological models (i.e.,
occupancy models) that predict the probability of right whale occurrence to gain an in-depth
understanding of right whale occurrence patterns. However, for these models to accurately
predict and forecast whale occurrence, more survey effort and whale sightings are needed.
Therefore, we pivoted in Phase 2 to develop DSMs. DSMs have the added advantage of using
data from line transect surveys to estimate spatial and temporal variation in animal density,
rather than the probability of occurrence (as in occupancy models). Variations in density are
estimated as a function of environmental conditions. We used our DSMs to estimate the number
of right whales exposed to sound levels associated with Level A and B takes during pile driving
activities under 10 mitigation scenarios. Mitigation scenarios included combinations of Seasonal
Restrictions and Additional Noise Attenuation Systems. Seasonal restrictions can be used to shift
construction activities to seasons when the least number of animals are predicted to be present.
Noise Attenuation Systems (e.g., the Big Bubble Curtains and Double Big Bubble Curtains
considered here) reduce the radial distance that pile-driving noise travels. We estimated the
change in the predicted number of right whales exposed to sound levels associated with Level A
and B takes between each mitigation measure scenario and the Early Start and Late Finish
Seasonal Restriction scenario (hereafter “change in takes”) because this scenario represents the
longest period allowed for pile driving under a seasonal pile driving restriction.

Finally, we developed an R Shiny Decision Support App prototype to offer a user friendly and
interactive tool to engage interested parties with the key results of this trade-off analysis. It
provides a method by which developers and interested parties can better understand the
relationship between construction timing, mitigation measures, and the predicted impacts to right
whales in the MA/RI WEAs. We showcased our prototype app at a stakeholder workshop
attended by colleagues from Orsted and Equinor.



Methods

Task 1: Develop Predictive Models of Right Whale Distribution

Occupancy models estimate changes in species occurrence over time while accounting for
imperfect detection. We will estimate the probability of right whale occurrence using multi-
season occupancy models (Mackenzie and Royle, 2005). Using this approach will allow us to
estimate changes in right whale occurrence at sites (i.e., 4.6-by-4.6 km grid cells) in the southern
New England region over time (Figure 1). This grid cell size was selected to conform with the
resolution of the satellite environmental data products that will be used in our occupancy models.
We will use the occupancy models to estimate the probability of right whale occupancy,
colonization, persistence, and detection in the MA/RI WEA and surrounding waters. Occupancy
estimates are the probability that a grid cell is occupied at a given time. Colonization estimates
are the probability that whales will enter an empty grid cell, while persistence estimates are the
probability that whales will remain in an already occupied grid cell. Detection probability is the
probability that a whale that is present is observed during a survey.

Whale occurrence is influenced by a number of biological and oceanographic variables. Fitting
occupancy models with environmental covariates helps us understand the conditions that
influence species distribution patterns and how the influence of each environmental condition
may change seasonally. Using environmental covariates also enables predictions of species
distributions throughout our study area (e.g., regions between the aerial survey transect lines)
using broad-scale, spatially-contiguous, environmental data layers such as interpolated sea
surface temperature (SST), deep-water temperatures or primary production.

Multiple studies suggest that uncertainty in predicted marine mammal occurrence can be reduced
through the incorporation of multimodal survey data (Clark et al., 2010; George et al., 2013;
Kraus et al., 2016). However, this hypothesis has not yet been rigorously tested. To test this
hypothesis and attempt to reduce uncertainty in our modeled estimates, we will fit occupancy
models using aerial survey, acoustic survey, and combined data sources. By using both datasets,
we anticipate a reduction in uncertainty through an increase in the frequency of surveys.
Detection range during wildlife surveys varies depending on the survey platform/modality and
environmental conditions. Due to this modality-dependent range, a multi-scale occupancy model
is required to develop the combined aerial and acoustic survey model (Nichols et al., 2008).
Using multi-scale occupancy models will allow us to simultaneously estimate right whale
occupancy and detection probability at the larger spatial scale of the acoustic detection range and
the smaller spatial scale of the aerial survey detection range. Additionally, the predictive ability
of oceanographic covariates may vary by spatial scale and can be assessed using this method.
For example, at the larger spatial scale (i.e., the acoustic scale), C. finamrchicus may be an
indicator of right whale occupancy. Oceanographic fronts, which may aggregate C.
finmarchicus into the concentrated patches required to elicit right whales feeding behavior, may



be a better predictor of right whale occupancy at the smaller spatial scale (i.e., the grid cells used
for summarizing the aerial survey data).

Figure 1: Southern New England with a 4.6-by-4.6 km grid overlay. The probability of right
whale occupancy will be estimated by grid cell. The Massachusetts and Rhode Island Wind
Energy Area is outlined in purple.

Task 1 is subdivided into two subtasks. The first subtask (1.1) is combining the visual and
acoustic data set of right whale occurrence in the MA/RI WEA. The second subtask (1.2) is to
develop the ecological probability models.



1.1 Combine visual and acoustic data of right whale occurrence in the MA/RI WEA

1.1.1 Visual detections of right whales

The NEAq has been conducting aerial surveys in and around the MA/RI WEA from 2011
through the present (Figures 2 and 3). These surveys have been funded by MassCEC, the Bureau
of Ocean Energy Management (BOEM), and wind energy developers. A gap in funding resulted
in no aerial surveys in 2016. The aerial survey team aims to fly two general line-transect aerial
surveys every month but the realized effort is weather dependent. General surveys are
comprised of twelve north-south tracklines evenly spaced at approximately six nautical miles
(nm). Eight survey options are available: each option shifts all 12 tracklines 0.75 nm east or
west, but maintains the six nm spacing between tracklines. Survey options were selected at
random before each survey. Surveys were conducted in Cessna Skymasters O-2A (2011-March
2021) or Partenavias P68C (April 2021-present) at an altitude of 1,000 feet (ft) and a ground
speed of 100 knots (kts). Our analyses require data that has undergone the extensive QA/QC
process conducted by the North Atlantic Right Whale Consortium (NARWC). Therefore, our
analyses only use data collected through 2021.

We subset the aerial survey data to ensure only general surveys conducted under specific
conditions are used in the analyses (i.e., good visibility, Beaufort sea states less than or equal to
3, and effort conducted only on the north—south tracklines; Figure 2). This subset of the aerial
survey effort and sightings data were summarized in 4.6 km x 4.6 km grid cells.



Figure 2: Aerial survey tracklines (white) flown between 2011 and 2021. The effort data
used to make this figure has been put through the data processing code developed to remove
aerial survey effort data conducted in low visibility and/or high Beaufort sea states. We also
removed effort conducted on transits between transects (i.e., cross-legs). Aerial surveys were
flown by the New England Aquarium in and around the Massachusetts and Rhode Island Wind
Energy Areas (black outline).

1.1.2 Acoustic detections of right whales

Acoustic surveys were conducted using a network of marine autonomous recording units
(MARUSs) by the Cornell Lab Center for Conservation Bioacoustics. These surveys were funded
by MassCEC. Bottom-mounted MARUs were deployed from November 2011 through March
2015 and recorded continuously during their deployment (Figures 3 and 4). The MARUs were
suspended 3 meters above the seafloor. We used upcalls to determine right whale presence. The
MARU detection range varies by the amount of background noise (Estabrook et al., 2022).
Under median (50™ percentile) noise conditions in the right whale communication frequency



band (upcalls, 71-224 Hz), the detection range is estimated to be 8 km. Under low (5" percentile)
noise conditions, the detection range is estimated to be 22 km (Figure 4; (Estabrook et al., 2022).

Figure 3: Temporal overlap in survey modalities. The New England Aquarium conducted
aerial surveys approximately twice a month from 2011 to 2021, no surveys occurred in 2016.
The Cornell Lab conducted acoustic surveys using nine marine autonomous recording units
(MARUSs) from 2011 through 2015. Blue bars represent the days aerial surveys were conducted.
Orange bars represent the time periods that each MARU was recording. MARUSs continuously
record while deployed and therefore are represented by large chunks of orange.



Figure 4: Distribution of marine autonomous recording units (MARUs) by year. Acoustic
detection range is dependent on ambient noise levels. Under low noise conditions the detection
range is 22 km (pink circles), under mid-level noise conditions the detection range is 8 km (blue
circles). The Massachusetts and Rhode Island Wind Energy Area is outlined in purple.

1.1.3 Combination and comparison of aerial and acoustic detections of right whales

O’Brien et al. (2022) estimated seasonal right whale abundance using aerial survey data. The
abundance estimates represent the average abundance for any given day within the season. For
example, a spring abundance estimate of 24 right whales would be interpreted as: on the average
spring day we would expect 24 right whales to be present in the survey area. To compare the
aerial and acoustic survey datasets, we began with a qualitative comparison of a 30-day moving
average of right whale upcalls to the estimates of right whale abundance by O’Brien et al.
(2022). Additionally, we extracted right whales observed by the aerial surveys that were within
the detection range of the MARUSs. Finally, we used a Spearman correlation to determine the
relationship between aerial survey data and acoustic data. Spearman correlations were used
because the data are non-normally distributed. First, we determined the correlation between



estimated right whale abundance and the number of upcalls detected during the same time
period. However, there may not be a direct relationship between the number of right whales and
the number of upcalls because a single whale can generate multiple calls. Therefore, we also
compared right whale abundance to the proportion of days that at least one right whale upcall
was detected.

1.2 Ecological Probability Models

1.2.1 Analysis plan

We fit our first model with aerial survey data from 2011 — 2021 (hereafter referred to as the
“Aerial Model”). We used SST, bathymetry, chlorophyll a as oceanographic predictors.
Beaufort sea state and Julian day were used as predictors of the probability of detection.
Oceanographic front data will be used in the Aerial Model but will not be included until Phase 2.
This model will be compared to:

e Acoustic Model: A model fit using acoustic data from 2011 — 2015 with SST,
bathymetry, chlorophyll ¢, and modeled C. finmarchicus as environmental covariates.

e Aecrial and Acoustic Model: A model fit using both the aerial survey and acoustic data
with SST, bathymetry, chlorophyll a, and modeled C. finmarchicus as environmental
covariates.

e Acrial and Zooplankton Model: A model fit using aerial survey data from 2011 — 2017
with the original environmental covariates and modeled C. finmarchicus. This model will
not include data from 2018 — 2021 because C. finmarchicus data are only available
through 2017.

We compared right whale occupancy models run under a number of scenarios (Table 1), in
which we varied the temporal scale (i.e., months within a season) used to fit the model. The
temporal scale selected for our final model is dependent on the number of surveys within a site
during each season. Typically, at least three repeat surveys within a site during each season are
the minimum required for model convergence. In addition, precise occupancy estimates rely on
repeated surveys of a site during the season. We tested a number of temporal scales to determine
how the precision of our estimates changes as we increase the resolution of the temporal scale
(Table 1). For example, initially we ran the model with four three-month seasons every year;
other scenarios included 12 one-month seasons. We also varied the number of iterations used in
the Markov Chain. Increasing the number of iterations may increase the likelihood of model
convergence but it also can drastically increase the model run time.

1.2.2 Oceanographic Covariates

We wrote code in R (R Core Team, 2022), MATLAB (The MathWorks, Inc., 2022), and the
m_map toolbox (Pawlowicz, 2020) to aggregate the oceanographic covariates in the same 4.6 km
spatial resolution as the aerial survey data. SST and chlorophyll @ data were collected by the



Moderate Resolution Imaging Spectrometer (MODIS) instrument on the Aqua satellite between
2011 and 2021. Satellite data were downloaded as monthly 4.6 km resolution Level 3 coverages
from the National Aeronautics and Space Administration (NASA) Ocean Color web. We
obtained bathymetric data from the National Center for Environmental Information (NCEI) U.S.
Coastal Relief Model. We also met with oceanographers at the NOAA Northeast Fisheries
Science Center (NEFSC) who supplied us with oceanographic frontal data. Both the C.
finmarchicus dataset and the oceanographic fronts were processed according to our temporal and
spatial modeling resolutions.

Table 1: Modelling scenarios and trial strategies. Each scenario will be run in multiple trials.
Trials may vary by the data included to fit the model, environmental and detection covariates,
and the number of iterations, chains, and burn-in period. Trials that have been run during phase
1 have been assessed for convergence using Gelman-Rubin statistics.

1.2.3 Modeling methods

We fit occupancy models with JAGS (Plummer, 2003) using the R2jags package (Su and
Yajima, 2021) in R. We used vague priors (i.e., normally distributed with a mean =0 and a
variance = 0.1). The number of chains, iterations, and burn-in varied by modeling scenario
(Table 1). We visually checked for model convergence by assessing traceplots and Gelman-
Rubin statistics (Gelman et al., 2004). Inference on parameters was made using 95% Bayesian
credible intervals. Distributions of parameter estimates that did not overlap 0 at the 95% credible
interval were considered to be extremely likely to have an effect while distributions of estimates
that did overlap 0 at the 95 % credible interval were not considered further.

1.2.4 Occupancy Model Validation

We used the acoustic survey data to validate the models fit with visual survey data. Our initial
methods for model validation used a Spearman correlation to determine the relationship between
the probability of mean habitat use estimated using the Aerial Model over the entire study area
and three different metrics summarizing habitat use based on the acoustic survey data: 1) the
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number of days when at least one upcall was detected; 2) the proportion of recording days when
an upcall was detected; 3) the number of recording days when an upcall was detected.

Task 2: Estimate Uncertainty in Right Whale Predictions
2.1: Estimates of uncertainty in right whale predictions

To measure the estimated uncertainty in our Right Wind models, we wrote code in R to estimate
and map lower and upper 90% credible intervals for the probability of colonization and
persistence. In addition, we wrote code that maps the difference in the upper and lower credible
intervals. These maps clearly visualize the variation in the precision of the predictions over
space and time.

Task 3: Develop Financial Risk Assessment Scenarios

We have researched the impact of noise on right whales, public IHAs (including those for the
Vineyard Wind I and South Fork Wind Farm projects), and the various mitigation measures that
developers can utilize to maintain compliance with their IHAs. We developed three pile-driving
impact scenarios. To create the scenarios, we have designed a hypothetical offshore wind farm
and determined the foundation installation methods for this farm, where all qualities of the farm
and the installation methods reflect business-as-usual (hereafter referred to as the “Early Start
and Late Finish scenario”) at the time of this report (fall 2022). Then, we adapted this baseline
into two new scenarios which vary only in their foundation installation timeline and methods.

The hypothetical farm contains 70 turbines with an assumed 10.3-meter diameter monopile
foundation and transition piece (Figure 5). The foundation diameter is reflective of industry
trends towards larger wind turbines.
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Figure 5: Computer rendering of a monopile installed into the seabed. This image shows
the monopile with a transition piece installed atop it and scour protection installed where the
monopile meets the subsea surface.

The farm’s location is an important aspect of the financial assessment of these scenarios because
the varying characteristics of farm location such as water depth, piling target depth, and soil
profile inform the durations of campaign activities, which have a direct relationship with overall
campaign duration and associated financial cost. The location and layout of the farm aimed to
satisfy three objectives:

1. Reflective of a foundation installation campaign in the MA/RI WEA
2. Overlapping with both the acoustic and the aerial survey data used to generate the models
3. Nonspecific to any one or handful of ongoing projects/developers

For the purposes of generating the mitigation scenarios, we selected one sample location,
centered at 40°47'09.6"N 70°48'43.2"W, southwest of the MA/RI WEA. This area, shown in
Figure 6, has been excluded from the MA/RI WEA due to its role as a munition disposal site; for
our purposes, we assume this area is feasible for development. The farm layout follows the one
nautical mile grid layout endorsed by the Coast Guard and observed by all developers within the
MA/RI WEA, as shown with bathymetric contours in Figure 7. All piles are installed by impact
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pile-driving, and per expectation of NOAA, each pile will be installed with two methods of noise
attenuation, one of which is a BBC.

Figure 6: Simulated windfarm in the MA/RI Wind Energy Area. Dots show a one nautical
mile grid turbine layout within the WEA and the layout of the 70-position hypothetical farm for
which the foundation installation schedule in this report was built.
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Figure 7: One nautical mile grid layout inside the Massachusetts and Rhode Island Wind
Energy Area with bathymetric contour lines. This whole area will be sampled in the Monte
Carlo simulation in the next phase of the project.

We assumed that a conventional heavy lift vessel (HLV) is conducting pile-driving, as opposed
to a jack-up vessel. The vessel will install the foundations in batches with the ability to load out
five monopiles and transition pieces and install these before returning to port. The New Bedford
Marine Commerce Terminal (NBMCT) was selected as the marshalling port due to its optimal
location for serving the whole MA/RI WEA. It is assumed that the HLV will follow the traffic
separation scheme before taking a direct path of transit to the farm location (Figure 8). Thus,
using an average transit speed of 6 knots and approximate transit distance of 145 km from the
NBMCT to the center of the project area, transit time was estimated to be 13 hours.
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Figure 8: The Massachusetts and Rhode Island Wind Energy Area, one nautical mile grid
layout, and the traffic separation schemes for the installation vessel. The vessel will transit
from the New Bedford Port to outside the northwest corner of the block, then transit through the
Wind Energy Area to the farm location.

Task 4: Determine the Models’ Ability to Forecast Right Whale
Distributions

Task 4 is subdivided into two subtasks. The first subtask (4.1) is determining oceanographic
variables that best predict whale occurrence. The second subtask (4.2) is determining the best
spatial and temporal scales for forecasts.

Occupancy models estimate changes in species occurrence over time while accounting for
imperfect detection. However, as indicated in our results for Task 1.1, we were not able to get an
occupancy model to converge. Occupancy models require multiple surveys of each site (grid
cell) within the time period of interest. The low number of repeat site visits per season likely
prevented our models from converging. Because the model did not converge, it cannot be used
for decision-making or forecasting. Therefore, to complete Task 4, we fit DSMs. Like occupancy
models, DSMs account for imperfect detection, but they have the added advantage of estimating
spatial and temporal variation in animal density, rather than the probability of occurrence (as in
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occupancy models). Variations in density are estimated as a function of environmental
conditions.

Aerial surveys

To account for changes in altitude and the aerial survey platform, the dataset used in Task 4 is
slightly different than the dataset used in Task 1, the aerial survey methods for Task 4 are as
follows. Whale sightings were collected during aerial surveys, flown approximately twice
monthly, in Southern New England between 2011 and 2020 (Figure 2). Aerial surveys were
flown at a ground speed of 185 km/h and an altitude of 305 m, in a Cessna Skymaster 337 O-2A
aircraft. Trackline effort and environmental conditions were recorded every 2-5 seconds. Two
observers, one on either side of the aircraft, scanned their field of view for whales. Sightings
were recorded when they were perpendicular to the aircraft. Marks on the wing struts were used
to record the estimated distance of the sighting from the trackline. When right whales were
sighted, the plane diverted from the trackline to obtain photo-identification data for monitoring
use of the area by individual whales.

Data preparation

To use the aerial survey data in DSMs, sections of aerial survey tracklines with uninterrupted
survey effort were separated into approximately 4.6 km segments. In particular, we determined
how many 4.6 km segments were contained in the uninterrupted survey effort. If the remaining
effort was < 2.3 km long, we randomly selected one segment to include the target 4.6km of effort
and the remaining amount of effort. If the remaining effort was > 2.3 km, we randomly selected
one segment to have a target distance equal to the remaining amount of effort. If the entire
section of uninterrupted survey effort was < 4.6 km, it was treated as a single segment. We then
summed the point-to-point distances to make segments totaling each target distance. However,
the sum of the point-to-point distances was not always equal to the target distance. To avoid
biasing the segment lengths, we randomly determined if the segment should be slightly longer or
shorter than the target distance. We also summarized the number of whale sightings and the
number of whales in a group for each segment.

To estimate whale density, we used a multi-step modeling approach. The first step included
fitting a detection function and estimating the effective strip width. The details of this process
can be found in O’Brien et al., (2022). Because these surveys were flown in closing mode (i.e.,
the team diverted from the trackline to obtain photographs of individual whales), some whales
were observed when the plane was not on the trackline. To adhere to the assumptions of distance
sampling, the detection function was fit only with whales sighted from the trackline (Figure 9).
In contrast, the spatial model (described below) was fit with all animals regardless of whether the
animal was detected when the plane was on or off the trackline. The Distance package in R was
used to fit a detection function with a hazard rate model (Miller et al., 2019; R Core Team,
2022). The second step in the modeling process included fitting generalized additive models
(GAMs) to capture the relationship between the number of whales observed on a segment and
oceanographic predictor variables (described below). We used a tweedie distribution and fit the
models using the dsm package in R (Miller et al., 2013; R Core Team, 2022). Parameter
estimates were optimized using restricted maximum likelihood (REML). Thin plate regression
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splines were used to model the relationship between individual environmental variables and right
whale density. Relationships between whale density and interactions between variables were
modeled using tensor splines. Density (D) was estimated as:

Di = (n/L) * %(ESW) *g(0)
Where 7 1s the number of animals on segment 7 and L is the length of the segment (km). ESW is
the effective strip half width estimated from the detection function. We assumed perfect
detection on the trackline (i.e., g(0) = 1). An offset was used in the GAMs to include the natural
log of the effective area searched.

Figure 9: Right whale detection function derived from aerial survey data collected
between 2011 and 2020. The line is the fitted detection function. The gray bars represent the
number of sightings at each distance (km).

We assessed model fit by visually inspecting q-q plots and using the root mean squared error
(RMSE). We compared models using the receiver operating characteristic curve (AUC) and
Akaike’s Information Criterion (AIC score). Models with larger AUC values have a better fit,
while lower AIC scores indicate models with more support. Ultimately, we used AIC scores to
determine the model with the most support to predict right whale density. To ensure
extrapolation errors did not occur in our density predictions, we visually inspected histograms of
the environmental data used for model fitting against the environmental data used to make
predictions.
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Variance was estimated using the methods outlined by Miller et al. (2022). Because we did not
use predictor variables to model our detection function, we used the delta method to propagate
the uncertainty in detectability into the GAMs. We then used a multivariate normal distribution
to simulate 10 samples using the GAM parameters () and covariance matrix. For each eight-day
period we calculated the predicted abundance for each grid cell 10 times (i.e., one abundance
estimate per grid cell for each of the B samples). We then used the Welford method to summarize
the seasonal average density and variance for each grid cell.

4.1 Oceanographic variables that best predict whale occurrence and the best
spatial and temporal scales for forecasts.

We used DSMs to model whale density as a function of oceanographic variables (Table 1). Right
whales have been observed over a wide range of depths and their preferred depths vary by
habitat. In the Gulf of Maine right whales regularly occur in waters 100 to 200 m deep. However,
in Cape Cod Bay, which is a prolific spring feeding ground, right whales occur in waters that are
only 18 to 60 m deep. We used 0.00083° resolution depth data from the Northeast Coastal Relief
Model V154 as a predictor variable in our DSMs. We calculated the distance from each segment
midpoint to the 30, 40, and 50 m isobath using the marmap package in R (Pante and Simon-
Bouhet, 2013; R Core Team, 2022). Right whales primarily feed on Calanus finmarchicus
(Mayo and Marx, 1990); in the absence of right whale prey data suitable for our study, we used
chlorophyll a concentration as it is an indicator of primary production, which should be broadly
indicative of secondary production and the zooplankton species, such as C. finmarchicus, that are
targeted by right whales. We used Aqua MODIS Global Mapped Chlorophyll data sampled at
eight-day intervals at a 4 km spatial resolution (NASA Ocean Biology Processing Group, 2017).
In Cape Cod Bay, abundance of C. finmarchicus and Centropages typicus, a second right whale
food source, were found to be correlated with salinity (DeLorenzo Costa et al., 2006). We
obtained four-day salinity data on a 1/4° grid from the Multi-Mission Optimally Interpolated Sea
Surface Salinity Global Dataset V1(IPRC/SOEST, 2021). Previous studies have found the winter
distribution of right whales to be largely determined by SST, although the mechanism for this
influence is unclear (Pendleton et al., 2012). We obtained daily SST data on a 0.01 ° grid from
the GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1)
(NASA/JPL, 2015). All oceanographic variables were standardized on a 4.6 km grid, over eight-
day periods. Oceanographic data were associated with the midpoint of each trackline segment.
We created eight-day, 4.6 km prediction grids, over the spatial extent of the prediction box
(Figure 10).
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Figure 10: Right whale modeled density in the the southern New England study area. A)
Bathymetry of project area, with relevant isobaths in white, grey, and black. B) The New
England Aquarium aerial survey effort (km), summarized in 4.6 km grid cells. Black dots
represent right whale sightings made during aerial surveys. The Massachusetts / Rhode Island
Wind Energy Area is outlined in white. The density prediction area is outlined in red.
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4.1.2 Best spatial and temporal scales for forecasts

To determine the model’s ability to forecast right whale distributions, we fit a model for the
years 2011 through the end of 2020. We then used that model to make predictions for 2021
through July of 2022. We visually compared the model predictions with the distribution of right
whales observed by the aerial surveys.

Task 5: Develop Commercialization/Marketing Strategy

Task 5 is subdivided into four subtasks. The first subtask (5.1) is developing an effective
marketing plan. The second subtask (5.2) is drafting several pieces of social media content. The
third subtask (5.3) is drafting an industry-grade white paper that highlights the project and its
proposed findings and recommendations. The fourth and final subtask (5.4) is to present at a
major offshore wind conference.

To develop an effective marketing plan, we first identified the target audience. Next, we assessed
what resources and outlets were already accessible to the team, such as social media outlets and
conference opportunities. This also includes the extensive scientific and industry networks of the
NEAq, Cornell University, and LAUTEC. Example text and social media posts were drafted on
the basis of previous marketing experience and the message we hope to convey to each of our
networks.

We drafted an industry-grade white paper to fulfill subtask 5.3. The content of this draft can be
found in Appendix A.

Task 6: Assess Financial Risk; and Task 7: Analyze Economic Tradeoffs

To determine the tradeoffs between the financial costs of mitigation measures and their
conservation benefit, we developed a wind energy construction simulation. In the simulation,
10.3diameter monopile foundations and transition pieces are installed 1 nm apart across the
WEAs (Figure 11A). We assume monopile foundations would be constructed using an industry
standard piling technique. This method involves dropping a hammer onto the monopile
foundations to drive them into the stable seabed.
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Figure 11: Schematic of tradeoff simulation. A) Simulated windfarm layout for the
Massachusetts/Rhode Island Wind Energy Areas (white outline) with hypothetical turbines
(white circles) spaced 1 nautical mile apart. B) 70 randomly chosen turbines within the circular
buffer (blue circle) and five turbines (pink dots) randomly chosen for pile-driving in the first eight-
day period of the simulation. C) shows right whale density summarized by grid cell for a single
eight day period (C). The white circles indicate the Level A take ranges using 10 and 12 dB of
noise attenuation.
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Noise transmitted during pile driving is expected to have the biggest impact on cetaceans that
communicate with low frequency sounds when compared to other potential wind energy
construction impacts (Madsen et al., 2006). Pile driving sound transmission is dependent on
several factors including seasonal variation in oceanographic conditions, bathymetry, substrate,
pile material and diameter, and the energy of the pile driving hammer (Bailey et al., 2010). The
U.S. MMPA defines Level A harassment as any act of pursuit, torment, or annoyance which has
the potential to injure a marine mammal or marine mammal stock in the wild (NMFS, 2024).
Level B harassment is defined as any act of pursuit, torment or annoyance which has the
potential to disturb a marine mammal or marine mammal stock in the wild by causing a
disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing,
breeding, feeding, or shelter. Acoustic exposure thresholds for Level A and B harassment are
defined for protected species. Acoustic thresholds are used to quantify the size of the area
surrounding the pile-driving that would encompass Level A and B take zones. Animals found
within these zones would be exposed to acoustic thresholds surpassing what is considered a
Level A or B take. Sound levels exceeding these thresholds within the zone result in a “take” of
the protected species. The allowable number of takes are defined in projects permits.

To quantify the impact of wind energy development on right whales, we used predictions from
our DSM to calculate the number of whales that would occur within Level A and B take zones,
which means the whales could be exposed to sound levels associated with Level A and B takes
(Figure 11C; hereafter, referred to as the predicted number of whales exposed to sound levels
associated with Level A and B takes). We selected right whale density predictions from the
eight-day period corresponding to the installation of the five selected turbines. To propagate
variation in the density estimates through the tradeoff analysis we calculated the predicted
number of whales exposed to sound levels associated with Level A and B takes ten times (i.e.,
one for each of the ten density estimates we calculated per grid cell per eight-day period).
Density predictions may be missing for a grid cell if environmental data was missing for that
eight-day period. We replaced these missing values with the average density prediction for that
grid cell from the previous and post eight-day period. If the previous and post eight-day period
also had missing values the density prediction was replaced with the monthly average for that
grid cell. If the monthly average was also missing, the density was replaced with the seasonal
average for that grid cell. We calculated the mean and variance of the ten density estimates to
quantify the predicted number of whales exposed to Level A and B takes. We summed the
predicted number of whales exposed to Level A and B takes over the development period to
determine the predicted number of whales exposed to takes in each campaign.

The radial distance of Level A and B take ranges can be reduced using noise mitigation systems
like BBCs. Compressed air is forced through holes in a hose, lying in a circle on the seafloor
around the construction site, emitting a bubble curtain into the water column. A DBBC consists
of two hoses lying on the seafloor. The noise attenuation, and therefore the radial distances of the
take ranges, for BBCs can vary depending on the volume of compressed air, the size and spacing
of the holes in the hose, the distance from the hose to the pile-driving location, current direction
and speed, and water depth (Bellmann et al., 2020). BBCs have been optimized for up to 15 dB
of noise attenuation and DBBCs have been optimized for up to 18 dB of noise attenuation
(Hydrotechnik Lubeck, 2022). In our simulation, we assume a BBC attenuates noise up to 10 dB
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and a DBBC would attenuate noise up to 12 dB. To determine the radial distances of Level A
and B take ranges we compiled data from the literature (Denes et al., 2019; Kusel et al., 2022;
Limpert et al., 2024; Powered by Orsted & Eversource, 2024; Pyc et al., 2018; South Fork Wind,
LLC, Powered by Orsted and Eversource, 2021). We found large variation in reported radial
distances of Level A and B take ranges, dependent on the area, season, and underwater noise and
exposure modeling vs. sound field verification estimates (Level A 10 dB mean = 3.53 km, SD =
1.81; Level A 12 dB mean = 3.98 km, SD = 2.00; Level B 10 dB mean = 4.48 km, SD = 1.99;
Level B 12 dB mean =3.77 km, SD = 0.81). Therefore, we decided to restrict our analysis to
data from underwater noise and exposure modeling for the WEAs during the summer months
(Kusel et al., 2022; Limpert et al., 2024; Pyc et al., 2018). We used the compiled data to
calculate the median radial distance for Level A and B take ranges assuming 10 dB and 12 dB of
noise attenuation (Table 2).

Table 2: Summary of pile-driving window, noise attenuation, and Level A and B take
ranges (radial distance) for each mitigation scenario used in the tradeoff analysis.

Monopile locations were spaced 1 nm apart, throughout the prediction box, and then clipped to
the WEAs (Figure 11A). We began the simulation by randomly choosing one monopile location
in the WEAs. We assumed the average area of a wind energy development campaign is
approximately 675 km? (NOAA, 2021), therefore we drew an 473 km? circular buffer around the
randomly chosen monopile location (Figure 11B). We assumed a hypothetical wind energy
developer plans to drive 70 monopiles within the circular buffer; for context, the number of
turbines varies by project but in the WEAs the numbers range from 62 — 130 (Kusel et al., 2024;

23



BOEM, 2024). For each eight-day period throughout the year, we randomly chose five of the 70
turbines from within the circular buffer that had adequate weather for pile driving one turbine in
one day. We assumed two hours were required to drive a monopile. Weather was considered
adequate for pile driving when the mean wind speed was at or below 15 m/s at 100 m above
mean sea level for two hours and visibility was greater than 2 km (Figure 12). Pile driving could
only occur during daylight hours, which varied monthly. Wind conditions were derived from the
hourly Copernicus Era5 re-analysis dataset (IPRC/SOEST, 2021). The 100 m-u component and
the 100 m-v component of wind were downloaded and combined (ws = sqrt(u® + v?)) to estimate
average hourly wind speed for 2018 in the WEAs. To determine days with visibility conditions
adequate for pile driving, monthly visibility conditions were evaluated using the International
Comprehensive Ocean—Atmosphere Data Set (ICOADS) database (Freeman et al., n.d.). For
each month, we calculated the percentage of days that were subject to visibility less than 2 km
using local ship-based observations collected between 2013-2024. We then took the monthly
average of these percentages and randomly assigned the corresponding proportion of low
visibility days to our dataset (Table 3).

Within our wind energy development simulation, we consider ten mitigation scenarios (Table 2).
The No Seasonal Mitigation scenario assumes pile-driving can occur throughout the year and
requires 10 dB of noise attenuation via a BBC. The No Seasonal Mitigation and Additional Noise
Attenuation scenario assumes pile-driving can occur throughout the year and requires an
additional noise attenuation device (i.e., a DBBC) that results in 12 dB of noise attenuation.

Figure 12: Simulated average number of workable hours for windfarm construction.
Construction day is modeled over an eight day period in the Massachusetts/Rhode Island Wind
Energy Areas, when wind and daylight are considered. Workable hours are shown in teal, non-
workable hours are shown in pink.
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Table 3: Percentage of days with visibility less than 2 km according to the International
Comprehensive Ocean-Atmosphere Data Set (ICOADS) database. Data used in our
analysis were collected between 2013-2024 and averaged monthly. The 2013-2024 time
period was chosen to avoid overly skewing the data with historic conditions while also
overlapping with the years aerial survey data collection occurred.

Month Average number  Standard deviation Average number  Standard deviation Percentage of
of days with of number of days of days with of number of days days with poor
weather data with weather data poor visibility with poor visibility visibility
January 8.92 3.60 1.11 0.33 12.46
February 7.00 391 2.00 1.41 28.57
March 8.70 3.16 1.17 0.41 13.41
April 9.82 3.52 1.43 0.79 14.55
May 11.36 3.38 2.25 1.39 19.80
June 13.91 351 2.56 1.51 18.37
July 11.36 2.77 2.44 1.24 21.51
August 13.55 3.21 2.17 1.17 16.00
Septembe 15.73 3.66 3.50 2.59 22.25
r
October 15.18 4.51 1.50 0.55 9.88
November 9.36 3.35 1.00 0.00 10.68
December 7.64 4.11 1.40 0.55 18.33

The seasonal restriction scenarios maintain the single BBC (i.e., 10 dB noise attenuation), but
change the piling schedule. The Early Start and Late Finish Seasonal Restriction scenario
assumes piling cannot occur from January 1 through April 30(National Marine Fisheries Service,
2020, p. 7). In the Late Start Seasonal Restriction scenario, pile driving occurs from June 1
through December 31. In the Early Finish Seasonal Restriction scenario, pile driving occurs
from May 1 through November 30. Finally, in the Late Start and Early Finish Seasonal
Restriction scenario, pile driving occurs from June 1 through November 30. Scenarios labeled
with “Additional Noise Attenuation” use the piling schedule defined previously and require an
additional noise attenuation device (i.e., a DBBC), resulting in 12 dB of noise attenuation.

We assume a daily cost rate of $805,000 in 2018. This cost includes a HLV ($765,000), project
resources ($20,000), and two guard vessels ($10,000 each). These costs were based on the
literature (Maienza et al., 2020; Myhr et al., 2014; Quintana, 2016) and adjusted for inflation.
We also include a yearly cost of mobilization ($30M) (Ioannou et al., 2020). To determine the
cost of each scenario we multiply the campaign duration by the daily cost rate and add the yearly
mobilization costs. We assume a cost of $2M for a DBBC (Beelen et al., 2025).
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We submitted the results of the tradeoffs analysis (Task 6) into a scientific manuscript. After
approval from the NOWRDC technical committee we submitted the manuscript on August 4,
2025 to the peer-reviewed, high impact scientific journal, nature climate change. The draft is
currently undergoing the review process at the journal.

Task 8: Develop Decision Support Framework

We developed a prototype of an R Shiny Decision Support App to offer a user friendly and
interactive tool to engage interested parties with the key results of our tradeoff analysis. The
prototype app provides a method by which developers and interested parties can better
understand the relationship between construction timing, mitigation measures, and the predicted
impacts to right whales in the MA/RI WEAs (Appendix B). The framework also represents a
prototype for future scenario planning and mitigation assessments, written in a flexible coding
language that can be easily modified. The backend is written in R Studio, and the user interface
is suitable for those who are not familiar with R or other coding languages. We designed the user
interface to guide an individual through key background information and then the necessary
steps to generate a wind farm simulation from our pre-calculated scenarios. The tool incorporates
interactive buttons that lead the individual through each webpage, with options to view the full
tradeoffs manuscript (pending submission and publication). We incorporated additional features,
such as a floating button on each page that allows the user to offer feedback to our team, and a
tab to provide web-links where the user can access further information about the impacts of
offshore wind on whales and how these impacts are monitored and mitigated. This Decision
Support Prototype currently exists on a local server at NEA(q, and could be adapted in the future
for other offshore wind projects, or alternative trade-off analyses.

Task 9: Deploy Commercialization Strategy

The strategy for commercialization of this tool was largely focused on the value it would bring to
the offshore wind farm development companies in the United States. This would be
accomplished through the marketing strategy defined in Task 5 as well as further stakeholder
engagement via a workshop where the tool was reviewed and commented on by teams at local
offshore wind developers. The team hosted an online Stakeholder Engagement Workshop with
all developers in the northeast United States invited and Equinor and Orsted in attendance.
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Results

Task 1: Develop Predictive Models of Right Whale Distribution

1.1 Combine visual and acoustic data set of right whale occurrence in MA/ RI
WEA.

Visual Detections of Right Whales

Between 2011 and 2021, 490 right whales were observed during the aerial surveys. From 2011
through 2015, right whale presence, as indicated by the number of whales counted by the aerial
survey team (i.e., the number of whales observed during aerial surveys regardless of the amount
of aerial survey effort), peaked in the winter and spring, consistent with historical whaling data
from this habitat (Allen, 1908) (Figures 13 and 14). Beginning in 2017, right whales were also
detected by the aerial survey team in the summer and fall months (Figures 13 and 14). Right
whale presence, as detected with aerial surveys, now occurs in southern New England in all
seasons (Figures 13, 14, and 15). The spatial distribution of right whale detections by the aerial
survey team varied by year (Figure 15). In general, right whale detections were spread from east
to west across the northern part of the survey area in 2012, 2015, 2017, and 2021. However,
concentrations of right whale detections occurred on the eastern side of the survey area in 2013,
2014, 2018, and 2019.
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Figure 13: The number of right whale sightings detected by aerial survey by month for
two time periods (2012-2015 and 2017-2021). Right whales were not detected by aerial
surveys in the summer and fall months during the 2012-2015 time period, but were detected in
all seasons during the 2017-2021 time period. No aerial surveys were conducted in 2016. Right
whale sightings in this figure are not corrected for monthly variations in effort.
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Figure 14: The number of right whale sightings detected by aerial survey by month for
each year. No aerial surveys occurred in 2016. Right whale sightings in this figure are not
corrected for monthly variations in effort. Note: there were no right whale sightings in May of any

year.
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Figure 15: Right whales detected during New England Aquarium aerial surveys, faceted
by year. No aerial surveys occurred in 2016. The black outline defines the Massachusetts and
Rhode Island Wind Energy Areas.

Acoustic detections of right whales

A total of 6,894 days of audio recordings were collected between 2011 and 2015, with over
40,000 right whale upcalls detected. The number of right whale upcalls were the highest during
the winter and spring and increased over the years with a peak in February 2015 (11,092 upcalls,
Figures 16 and 17). There may not be a direct relationship between the number of right whale
upcalls and the number of whales present because of variability in the number of upcalls
produced by individual whales (e.g., some whales may call frequently, while other whales do not
call at all). Therefore, we summarized upcalls using a variety of metrics, including the number
of upcalls and the proportion of the MARU recording days with at least one upcall (Figure 18).
Winter 2013 had the highest proportion of recording days with at least one upcall. Right whales
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were detected in all seasons (Figures 16 and 18). The spatial distribution of right whale
detections by the acoustic surveys varied by year (Figure 19).

Figure 16: The number of right whale upcalls detected by marine autonomous recording
units (MARUs) by month for 2011-2015. Right whale upcalls in this figure are not corrected for
monthly variations in effort.
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Figure 17: The number of right whale upcalls detected by marine autonomous recording
units (MARUs) by month for each year. Right whale upcalls in this figure are not corrected for
monthly variations in effort.
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Figure 18: The proportion of Marine Autonomous Recording Unit (MARUs) deployment
days with a recorded right whale upcall for each season of each year. December is
considered a winter month for the following year (i.e. December 2012 is part of “Winter 2013”).

Combination and comparison of aerial and acoustic detections of right whales

The aerial and acoustic survey data were collected at different spatial scales and coverage
(Figure 20). Because of the difference in spatial coverage between the two survey modalities we
would not expect all of the right whales observed by the aerial survey team to be detected by the
MARUSs, and vice versa. Between 2011 and 2015, four sightings of seven right whales were
made by the aerial survey team within the detection range of MARUSs under low-level noise
conditions (22 km MARU detection range) (Figure 21B, 21D, 21F). One sighting of two right
whales was made by the aerial survey team within the detection range of MARUs under median-
level noise conditions (8§ km MARU detection range) (Figure 21A, 21C, 21E). We determined
that in some instances there were right whale upcalls under low- and median-level noise
conditions, and no sightings by the aerial survey team. Surprisingly, the MARUSs under the low-
level noise condition detection range (22 km) that corresponded with most of the right whale
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sightings made by the aerial survey team had relatively few right whale upcall detections (Figure
21B). Additionally, the only MARU under median-level noise conditions (8 km detection range)
that corresponded with right whale sightings made by the aerial survey team also had relatively

few right whale upcall detections (Figure 21A).

Figure 19: The number of right whale upcalls detected by marine autonomous recording
units (MARUSs) in the Massachusetts and Rhode Island Wind Energy Areas (white outline)
by year. Circle size represents the detection range (22 km) of MARUs under low noise

conditions.
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Figure 20: Aerial survey effort and marine autonomous recording units (MARUSs)
detection range under low- and mid-level noise conditions. Pink circles indicate the
detection range of MARUs under low-level noise conditions (22 km). Blue circles indicate the
detection range of MARUs under mid-level noise conditions (8km). Aerial survey effort is
represented by white lines. The gray 4.6-by-4.6km grid was used to summarize aerial survey
and environmental data. The Massachusetts and Rhode Island Wind Energy Area is outlined in

purple.
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Figure 21: The number of right whale upcalls detected by marine autonomous recording
units (MARUSs) in the Massachusetts and Rhode Island Wind Energy Areas (purple
outline). Right whale upcalls are compared to the number of right whale sightings made by the
aerial survey team during the time of MARU deployment. Circle size for left-side figures (A, C,
E) represents the detection range (8 km) of MARUs under median-level noise conditions. Circle
size for right-side figures (B, D, F) represents the detection range (22 km) of MARUs under low-
level noise conditions. The number of right whale upcalls at each MARU is represented by
color. Aerial survey effort is represented by white lines, and black circles indicate the number of
right whales sighted by the aerial survey team during the MARU deployment.
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To qualitatively determine the relationship between the aerial and acoustic survey datasets we
compared a 30-day moving average of right whale upcalls to estimates of right whale abundance
from aerial surveys derived by O’Brien et al. (2022) (Figure 22). Generally, the seasonal trends
of the two survey modalities mimic each other. However, the increase in right whale upcalls can
be offset before or after aerial survey abundance estimates indicate an increase in right whale
habitat use.

Figure 22: Qualitative comparison of the number of right whale upcalls detected by
marine autonomous recording units (MARUSs) (pink), a 30-day moving average of right
whale upcalls (green), and right whale abundance estimated from aerial survey data
(blue). Discontinuations in the upcall moving average (green line) result from time without
deployed MARUSs.

We found a significant positive correlation between the number of right whale upcalls and the
right whale abundance estimates (Figure 23A; rho = 0.457, p < 2.2e-16). We also found a
significant positive relationship between the proportion of days in which at least one upcall was
detected and right whale abundance (Figure 23B; rho = 0.88, p = 0.0006). However, the
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relationship between right whale acoustic and aerial survey data seem to vary by season (Figure
23). In future phases of this project, we will explore and quantify these seasonal differences.

Figure 23: Spearman correlation showing the significant positive relationship between
right whale abundance estimated comparing aerial and acoustic survey data. (A) the
number of right whale upcalls detected on the marine autonomous recording units (MARUS), (B)
the proportion of days in which the MARUSs detected at least one upcall. Points are colored by
season.

1.2 Ecological Probability Models

In our first Aerial Model trial (four three-month seasons), not all of our oceanographic variables
converged (Rhat > 1.1; Table 1). The low number of repeat site visits per season is likely
inhibiting the variables from converging (Figure 24). Because some of the variables did not
converge, this model is not yet ready to be used for decision-making. However, the results from
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this model are indicative of what we expect to produce after we refine the models in Phase 2 of
Right Wind (discussed below).

Figure 24: The number of aerial surveys at each site (black bars) facetted by three-month
season. There are 36 three-month seasons between 2012 and 2021. The low number of repeat
visits to each site in seasons 29, 30, 31, 34, and 35 may have prohibited Aerial Model trial 1

from converging.
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The probability of occupancy maps show variations in occupancy probability in time and space
that coincide with our understanding of right whale habitat use in southern New England. For
example, the probability of occupancy in 2021 is predicted to be relatively high throughout the
study area in the spring (Figure 25). The probability of occupancy decreases in the summer
months; however, there are still areas south of Nantucket (Nantucket Shoals) with relatively high
probability of occupancy. During the fall and winter months the probability of occupancy and
the spatial area with high probabilities on the Shoals increases. However, the estimates of the
probability of colonization and persistence do not show any variation in time or space and are
likely suffering from the lack of model convergence (Figures 26 and 27). The mean probability
of occupancy over the entire spatial and temporal study indicates that winter habitat use in
southern New England by right whales is higher than spring, summer, and fall habitat use
(Figure 28). Winter habitat use also appears to be increasing over the time series. Although we
have not yet quantitatively tested for this increase, an increase in winter and spring abundance
was quantified by O’Brien et al. (2022).
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Figure 25: Predicted probability of occupancy in 2021 estimated using Aerial Model trial 1
(four three-month seasons). This model did not converge, and maps should not be used in
decision-making. The Massachusetts and Rhode Island Wind Energy Areas is outlined in white.
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Figure 26: Predicted probability of right whale colonization in 2021 estimated using Aerial
Model trial 1 (four three-month seasons). This model did not converge, and maps should not
be used in decision-making. The Massachusetts and Rhode Island Wind Energy Areas is

outlined in white.
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Figure 27: Predicted probability of right whale persistence in 2021 estimated using Aerial
Model trial 1 (four three-month seasons). This model did not converge, and maps should not
be used in decision-making. The Massachusetts and Rhode Island Wind Energy Areas is

outlined in white.

43



Figure 28: Estimated probability of habitat use over the entire study area for each year
estimated using the Aerial Model trial 1. Points are the mean probability of occupancy and
vertical lines represent the lower and upper credible intervals.

The pertinent months for wind energy construction in the MA/RI WEA are May through
October. Therefore, we ran an Aerial Model, inclusive of those months, with two three-month
seasons (trial 5). May, June, and July are defined as “early-summer” while August, September,
and October are defined as “late-summer”. Not all of our oceanographic variables converged in
this model; however, it was run with a low number of iterations in the Markov Chain and all
variables may converge when we increase the iterations (Rhat > 1.1, Table 1). The probability of
occupancy maps show variations in occupancy probability in time and space that coincide with
our understanding of right whale habitat use in southern New England during the summer
months (Figure 29). For example, the probability of occupancy in early-summer 2021 is
predicted to be high over the eastern (Nantucket Shoals), and northern regions of the study area
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(Nantucket Shoals). In the late-summer months of 2021, the area with high probability of
occupancy is reduced, but the northern and eastern sides of the study area have high probability
of occupancy relative to the rest of the MA/RI WEA. Mean estimates of probability of habitat
use are higher in the late-summer than the early-summer (Figure 30); however, the large credible
intervals make it difficult to discern a difference between the two seasons.

Figure 29: Predicted probability of occupancy in 2021 estimated using Aerial Model trial 5
(May — October, two three-month seasons). This model did not converge, and maps should
not be used in decision-making. The Massachusetts and Rhode Island Wind Energy Areas is
outlined in white.

Occupancy Model Validation

We used the acoustic survey data to validate our Aerial Model trial 1 (four three-month seasons).
A Spearman Correlation found no significant relationship between modeled estimates of mean
habitat use and the number of right whale upcalls (Figure 31A; tho =0.173, p = 0.552), or the
number of days with at least one right whale upcall (Figure 31B; rho = 0.252, p = 0.382). There
was a significant positive relationship between the proportion of days with an upcall and
modeled estimates of mean habitat use (Figure 31C; rho = 0.556, p = 0.04). However, there are
likely seasonal differences in this relationship.
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Figure 30: Estimated probability of habitat use over the entire study area for each year
estimated using the Aerial Model trial 5 (May — October, two three-month seasons).
Points are the mean probability of occupancy and vertical lines represent the lower and upper
credible intervals.
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Figure 31: Acoustic data were used to validate the results from the Aerial Model trial 1
(four three-month seasons). Estimated mean habitat use was not significantly related to A.)
the number of right whale upcalls, or B.) the number of days with at least one upcall. The
estimated mean habitat use was significantly related to C.) the proportion of recording days with
at least one upcall. Points are colored by season.

Task 2: Estimate Uncertainty in Right Whale Predictions

2.1 Estimates of uncertainty in right whale predictions

Maps of the lower and upper credible intervals for both colonization and persistence estimated
using the Aerial Model trial 1 (four three-month seasons) show variation in time and space
(Figures 32-35). In general, models had high confidence (lower uncertainty) where whales had a
low probability of occurring and had lower confidence (higher uncertainty) where whales had a
high probability of occurring. High uncertainty is common in estimates of marine mammal
distributions and our project will explore ways to reduce this uncertainty.
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Figure 32: Lower Credible Intervals for predicted probability of colonization in 2021
estimated using Aerial Model trial 1 (four three-month seasons). This model did not
converge, and maps should not be used in decision-making. The Massachusetts and Rhode

Island Wind Energy Areas is outlined in white.
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Figure 33: Upper Credible Intervals for predicted probability of colonization in 2021
estimated using Aerial Model trial 1 (four three-month seasons). This model did not
converge, and maps should not be used in decision-making. The Massachusetts and Rhode
Island Wind Energy Areas is outlined in white.
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Figure 34: Lower Credible Intervals for predicted probability of persistence in 2021
estimated using Aerial Model trial 1 (four three-month seasons). This model did not
converge, and maps should not be used in decision-making. The Massachusetts and Rhode

Island Wind Energy Areas is outlined in white.
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Figure 35: Upper Credible Intervals for predicted probability of persistence in 2021
estimated using Aerial Model trial 1 (four three-month seasons). This model did not
converge, and maps should not be used in decision-making. The Massachusetts and Rhode
Island Wind Energy Areas is outlined in white.

The Aerial Model trial 1 (four three-month seasons) estimated mean habitat use more precisely
for seasons with relatively lower probability of habitat use, especially after 2016. Large
variability in the mean probability of occupancy over the entire spatial and temporal study area
makes discerning trends difficult (Figure 25). The Aerial Model trial 5 (two three-month
seasons) had greater precision for early-summer estimates than late-summer estimates (Figure
30). Precision in late-summer estimates increases in later years of the time series.
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2.2 Presentation of whale modelling results at Stakeholder
workshop/panel/conference

Dr. Laura Ganley presented work from Right Wind at the International Ecological Modeling
Conference in Toronto, Canada, in April 2023, at the National Offshore Wind Research and
Development Symposium, in Brooklyn NY, in December 2023, at the New York Regional
Species Distribution Modeling Discussion Group at the American Museum of Natural History in
November 2023; at the Bureau of Ocean Energy Management (BOEM) Ocean Sciences
Meeting, in New Orleans Louisiana in February 2024, at the North American Congress for
Conservation Biology’s meeting in Vancouver Canada in June 2024, to the Project WOW
covariates subgroup in April 2025, and has submitted an abstract to the NARWC to present at
the annual meeting in New Bedford, Massachusetts in October 2025. LAUTEC applied to
present the Right Wind Project at the American Clean Power (ACP) conference in October 2023.
Although we were rejected to present at the ACP conference, members of LAUTEC were still
able to attend in October 2023 and verbally share the project’s intentions while networking and
meeting with developers or other members of the offshore wind supply chain.

The NEAq, LAUTEC US, and Cornell University collaborated to write a joint press release
introducing Right Wind to the public. The press release was approved by the National Offshore
Wind Research and Development Consortium. With the help of Teak Media + Communication,
our joint press release reached 4.1 million people between June 4 and June 13, 2022, with a
publicity value of $44,200.

Task 3: Develop Financial Risk Assessment Scenarios

3.1: Financial Risk Assessment Scenarios

Assuming two hours of suitable pile driving weather within a single day is required to complete
the installation of a single turbine (NOAA 2021, Siddagangaiah et al., 2022), and five turbines
can be installed per eight-day period, we determined that a construction campaign aiming to
drive 70 turbines would span 14 eight-day periods under all mitigation scenarios. This campaign
duration assumes that multiple piles can be driven in a single day.

3.2: Presentation of risk assessment scenarios results at Stakeholder
workshop/panel/conference

The goal of this subtask was to increase exposure of the project to relevant stakeholders and
interested parties. The joint press release introducing Right Wind to the public opened a
communication channel between LAUTEC and offshore wind developers, and we received
interest in the project from developers through this channel.

We used internal LAUTEC funding sources to send Nick Zenkin, former Research and
Development Manager, Grace Pacelle, and Carly Campbell to the International Partnering Forum
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(IPF), held in Atlantic City, New Jersey from April 26" — April 28%, 2022. This offshore wind
energy conference, hosted by the Business Network of Offshore Wind, involved three days of
networking with industrial and academic partners from around the world. We attended a panel
entitled “Automated Real-Time Marine Mammal Observations: Recent Advancements in
Technology” and shared with attendees our preliminary insights from this project and received
great interest in its future development and results.

Additionally, Nick Zenkin presented at the American Clean Power Conference on October 215
The American Clean Power Association published Mr. Zenkin’s recorded presentation, “Right
Wind: Resolving Protected Species Space-Use Conflicts in Wind Energy Areas,” on an online
database for all in attendance to view. The presentation outlines the project methodology and risk
assessment scenarios, explaining the importance to the industry and environmental stakeholders.
Some notable political figures in attendance at the conference included Secretary Deb Haaland,
Senator Edward Markey, Massachusetts Governor Charlie Baker, and BOEM Director, Amanda
Lefton. Senior management from GE, Equinor, Vestas, Vineyard Wind, EnBW, Orsted,
Mayflower Wind, Shell, Atlantic Shores, and Avangrid Renewables were also in attendance.

3.3: Presentation of case studies and risk assessment scenarios to the

Consortium and Advisory Board
On Wednesday, June 8th, 2022 and Wednesday, September 28th, 2022, the Right Wind team
presented our preliminary modelling results and risk assessment scenarios to the NOWRDC

Project Advisory Board. The advisory board provided valuable feedback that we have
incorporated in this report and will incorporate in future analyses.
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Task 4: Determine the Models’ Ability to Forecast Right Whale
Distributions

4.1 Oceanographic variables that best predict whale occurrence and the best
spatial and temporal scales for forecasts.

4.1.1 Oceanographic variables that best predict whale occurrence

We tested the ability of ten DSMs, to predict right whale density (Table 4). The model with the
most relative support included salinity, an interaction between SST and the eight-day period, and
an interaction between the distance to the 30 m isobath and the eight-day period (Table 4). This
model also had the highest AUC and explained 33.4% of the deviance (AUC = 0.89, Table 4).
There was a significant non-linear relationship between right whale density and all the variables
in the model (i.e., p < 0.05 for each covariate; Figure 36). We found seasonal patterns in right
whale density over all the years (Figure 37). During the winter, right whale density was highest
along the 30 and 40 m isobaths, and on Nantucket Shoals (Figure 38 and 39). Right whale
density was high throughout the study area during spring, particularly along the 30 and 40 m
isobaths, but density also increased between winter and spring in the southwest portion of the
prediction area. Density decreased during summer but remained high along the eastern side of
the 30 m isobath and on Nantucket Shoals. Densities were lowest in the fall and suggested that
right whales would be found along the 30 m isobath. In general, these seasonal patterns were
well represented within each year, with some notable exceptions. For example, the pattern of
higher density in the summer months along the eastern side of the 30 m isobath and on
Nantucket Shoals began in 2014 and predicted density was particularly high on Nantucket Shoals
in 2017 and 2019 (Figure 37 and 38).
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Table 4: Density surface models were used to relate aerial survey data, collected between
2011 and 2020, to oceanographic variables. The model with the lowest Akaike Information
Criterion (AIC) score was chosen as the model with the most relative support. We used Area
Under the Receiver Curve (AUC) and root mean squared error (RMSE) as a test of goodness-
of-fit. Models with RMSE values between 0 and 1 are considered to fit sufficiently.
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Figure 36: Visualizations of fitted values from the model with the most support for the
relationship between right whale density and the interaction between time of year (eight-
day period) and (A) sea surface temperature (SST) and (B) distance to the 30 m isobath. Partial
effects of (C) salinity on right whale density according to the model with the most support. The
gray shading represents 95% confidence intervals for the mean effect.
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Figure 37: Right whale density predictions per 1 km? from the density surface model fit
with aerial survey data collected between 2011 and 2020. Panels show the annual seasonal
average density based on predicted eight-day densities. White dots show right whale sighting
locations from the aerial surveys.
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Figure 38: Seasonally averaged right whale density predictions from the density
surface model fit with aerial survey data collected between 2011 and 2020. Density
ranges were selected to encompass all values within the 25 and 75% quantiles. White
dots show right whale sighting locations from the aerial surveys.

Figure 39: Seasonally averaged right whale density prediction standard
deviations from the density surface model fit with aerial survey data collected
between 2011 and 2020. Standard deviation ranges were selected to encompass all
values within the 25 and 75% quantiles. White dots show right whale sighting locations
from the aerial surveys.

4.1.2 Best spatial and temporal scales for forecasts

We fit the model with the most support with data from 2011-2020 and then used the model to
generate predictions for 2021 and 2022 (Figure 37). A visual comparison of right whales
observed by the NEAq aerial survey team and right whale density predictions for 2021 and 2022
showed relatively good agreement.

Task 5: Develop Commercialization/Marketing Strategy

By implementing the following comprehensive marketing plan, we aim to raise awareness of our
Marine Mammal and Weather Downtime Scheduling Tool within the offshore wind industry.
Our goal is to establish our solution as the go-to resource for developers committed to
environmentally responsible construction practices, particularly the conservation of right whales.
Through social media, conferences, community engagement, and informative infographics, we
will connect with our target audience and drive positive change in the industry.

Target Audience

Our primary target audience includes offshore wind project managers, construction managers,
environmental consultants, offshore wind developers, marine and logistics coordinators,
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regulatory authorities, marine biologists, conservation organizations, and environmental
agencies. Additionally, we aim to engage with local communities, colleges, and the broader
public to promote awareness about the topic.

General Message

The tool will help users to create project schedules that prioritize the conservation of right
whales and minimizes downtime during installation and construction. This comprehensive
marketing plan outlines strategies for promoting our solution through social media, conference
participation, community engagement, infographics, and more.

Social Media Strategy

We will utilize platforms such as LinkedIn, Instagram, and Facebook to share updates, success
stories, and industry insights (Figures 40, 41). This strategy will include sharing updates about
the tool uses, awareness about the topic, infographics, and more.

Figure 40: A sample draft of a LinkedIn social media post to raise awareness
about the project.
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Figure 41. Sample draft of a LinkedIn social media post to raise awareness about
the project.
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Conferences

Attending offshore wind industry conferences, expos, and seminars will allow us to spread the
word about the tool and showcase live demonstrations and presentations about our tool's
capabilities. We will benefit from attending these conferences by connecting— with potential
clients, industry experts, and regulatory bodies to build relationships and establish credibility
within the industry. Furthermore, these insights can be used to continuously develop the tool to
better help the user.

Community Engagement

Community engagement is vital to raise awareness and demonstrate that offshore wind can be
developed responsibly. We will collaborate with local communities, colleges, environmental
organizations, and marine research institutions to build trust and garner local support.
Furthermore, we will be hosting information sessions both in-person and virtually to educate the
public and/or stakeholders about the importance of responsible offshore wind construction
practices and the role our tool plays in it.

Infographics and Visual Content

We will create visually appealing infographics and videos that explain the tool's benefits, its role
in right whale conservation, and its ease of use. These materials will be used in social media
campaigns, conferences or tabling opportunities.

Task 6: Assess Financial Risk; and Task 7: Analyze Economic Tradeoffs

Allowing pile driving in all months increases the predicted number of right whales exposed to
Level A takes regardless of noise attenuation (No Seasonal Restriction = 283% increase; No
Seasonal Restriction and Additional Noise Attenuation = 30% increase; Figure 42) when
compared to the Early Start and Late Finish Seasonal Restriction scenario. Shorter pile-driving
seasons further reduces risk (Late Start = 8%, Early Finish = 10%, and Late Start and Early
Finish = 44% decrease in right whales exposed to Level A takes) when compared to the seasonal
restrictions in the Early Start and Late Finish Seasonal Restriction scenario. If a second bubble
curtain is used, the risk reduction is large and similar among pile-driving options that include a
seasonal restriction (Late Start and Additional Noise Attenuation = 68%, Early Finish and
Additional Noise Attenuation = 70%, and Late Start and Early Finish and Additional Noise
Attenuation = 81% decrease in right whales exposed to Level A takes). A second bubble curtain
incurs an additional $2M cost to development over the Early Start and Late Finish Seasonal
Restriction scenario (Beelen et al., 2025).

The change in risk for exposure to Level B takes was similar to Level A takes (Figure 42). One
difference was that allowing pile driving in all months while using a second bubble curtain
reduced the predicted number of right whales exposed to Level B takes (No Seasonal Restriction
and Additional Noise Attenuation = 38% reduction) when compared to the Early Start and Late
Finish Seasonal Restriction scenario, however we found large variability and often an increase
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in the predicted number of right whales exposed to noise levels above the Level B take threshold
(Figure 42).

Figure 42: The predicted number of right whales exposed to Level A and B takes for the
mitigation scenarios. Red circles indicate the % change in the mean predicted number of right
whales exposed to sound levels associated with Level A and Level B takes when compared to
the mean from the Early Start and Late Finish scenario. Black dots show the % change in the
predicted number of takes for each of the 10 development campaigns within each scenario.

The magnitude of variation around the predicted number of right whales exposed to takes
depends on the time of year that pile-driving took place (Figs. 43 and 44) and the location of the
wind farm within the WEAs. In 2018, standard deviations of right whale density estimates were
high in the winter months (Figure 45), when right whale abundance was high. The higher
standard deviations during this time period leads to relatively high variation in the predicted
number of right whales exposed to takes for the No Seasonal Restriction scenario (Figure 42),
which is the only scenario that allows pile driving during the winter months. In comparison,
density estimates in the WEAs in the summer and fall were more precise, when right whale
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abundance was lower, resulting in increased precision in the predicted number of right whales
exposed to takes (Figure 42). There was also high variation in the predicted number of right
whales exposed to takes in the winter months depending on the spatial location of the wind farm
(e.g., wind farms in the SW portion of the WEAs would have much lower right whale density
than wind farms in the NW portion of the WEAs).
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Figure 43: The predicted number of noise exceedances above the Level A Take regulatory
threshold that a campaign would use in each eight day period.
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Figure 44: The predicted number of noise exceedances above the Level B Take regulatory
threshold that a campaign would use in each eight day period.
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Figure 45: Seasonally averaged right whale standard deviation of density predictions for
each year from the density surface model fit with aerial survey data collected between
2011 and 2020. Density ranges were selected to encompass all values within the 25 and 75%
quantiles. White dots show right whale sighting locations from the aerial surveys.

Task 8: Develop Decision Support Framework

We developed an interactive R Shiny Decision Support App prototype which allows interested
users to interact with our tradeoff analysis results (Appendix B).

Task 9: Deploy Commercialization Strategy

After the completion of the Support Prototype, the team began its deployment of its previously
created commercialization strategy, including engaging with potential clients, ongoing industry
needs, and future use cases. The team implemented an outreach effort to all major offshore wind
developers in the northeast region of the United States. Unfortunately, due to major layoffs at
most developers we received a very low level of interest. Despite these challenges the team was
able to host a Stakeholder Engagement Workshop to present our Decision Support App
prototype to a group of ten colleagues from Orsted and Equinor. The workshop was hosted
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online and involved a presentation of the project and a detailed walk through of the Decision
Support Tool prototype, followed by Q&A from the developer teams. In general, the feedback
from the developers was positive and they saw value in a tool like this supporting their
development and construction efforts. Feedback on the prototype was well received by the
project team and suggestions were implemented where possible.

Discussion

Developing offshore renewable energy resources will help meet increasing energy demand, and
has the potential to increase economic growth, mitigate climate change, and help achieve a
thriving Blue Economy. To achieve ecosystem sustainability, which is an integral part of a Blue
Economy, the impacts of offshore development on vulnerable species must be minimized.
Ideally, wildlife mitigation measures would be optimized to yield maximum conservation value
while incurring minimal financial burden.

We developed a framework for a tradeoff analysis that allows the assessment of development
costs and conservation benefits associated with measures to mitigate potential impacts of wind
energy development on wildlife. Previous tradeoff analyses have used marine spatial planning to
assess the impacts of where WEAs are sited and when construction should occur on wildlife
conservation (Best and Halpin, 2019; White et al., 2024, 2012). Our analysis allows for a
detailed assessment of the impacts of wind farm construction on wildlife conservation. In the
USA, the permitting process quantifies the number of animals exposed to possibly harmful
impacts by counting the number of Level A and B takes. As such, we use exposure to Level A
and B takes as our measure of conservation value. While our case study required several
simplifying assumptions (discussed below), our framework allows interested parties to adjust the
assumptions, determine the conservation impacts of their actions, and minimize the costs of
development.

Under the assumptions used in our simulation, we found that it is possible to minimize the costs
of wind energy development and maximize right whale conservation. We identified several
scenarios where increased right whale protections came with minimal or no additional financial
costs. We found that both achieving additional noise attenuation, explored in our simulations
through adding a second bubble curtain, and seasonal restrictions on pile-driving, reduced the
number of whales predicted to be exposed to Level A takes when compared to the Early Start
and Late Finish Seasonal Restriction scenario (Figure 42). A second bubble curtain used with
seasonal pile-driving restrictions provides the most conservation benefit for right whales and
results in a cost increase of $2M over the Early Start and Late Finish Seasonal Restriction
scenario due to the cost of the additional noise attenuation devices (Beelen et al., 2025). This
additional $2M is only 2% of the cost of the Early Start and Late Finish Seasonal Restriction
scenario. Seasonal pile-driving restrictions, without the use of a second bubble curtain, also offer
more conservation value than the Early Start and Late Finish Seasonal Restriction scenario with
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no added financial costs. Our analysis shows that pile-driving with no seasonal restrictions
results in large increases in the number of right whales predicted to be exposed to Level A and B
takes because of the seasonal whale occurrence patterns as indicated by our DSM (Figure 38 and
39).

The possibility for mitigation measures to extend pile-driving into a second year of development
1s an important financial consideration for wind energy developers. Extending a development
campaign into a second year would result in an estimated minimum $30M cost increase due to
mobilization costs alone*’. In our simulation, even under the most limiting Seasonal Restriction
scenarios (i.e., the Late Start and Early Finish Seasonal Restriction scenario), the construction
of an average sized development campaign can be completed within one year. Therefore, the
financial cost of Seasonal Restriction scenarios is equal to the Early Start and Late Finish
Seasonal Restriction scenario. Under the assumptions in our simulation, it is possible to pile
drive 70 turbine foundations in a single year under the Seasonal Restriction scenarios. There is a
risk that a campaign could extend into a second year because of work stoppages caused by
unusually inclement weather, whale detections made by Protected Species Observers (PSOs),
limited visibility that inhibits necessary monitoring by PSOs, or issues with supply chain and
vessel mobilization. Right whale detections made from the pile-driving vessel trigger a mandated
work stoppage until PSOs confirm they have not detected a right whale from the vessel for at
least 30 minutes (National Oceanic and Atmospheric Association, n.d.). We have not included
these delays in our analysis, and these stoppages will likely increase the length of the
construction season. However, seasonal restrictions in pile-driving help to reduce the possibility
of a work stoppage for right whales because of their seasonal patterns of occurrence, as inferred
from our DSM.

Exceedance of the legally permitted takes during offshore wind development can result in
additional delays and costs due to necessary operational adjustments, permit modifications, or
project shutdowns (NOAA 2024). Identifying cost-effective solutions to minimize right whale
exposure to Level A and B takes during project development therefore represents a strategy that
both protects marine mammals and reduces the risk of future project delays. Project delays and
unexpected costs may also result from supply chain complications, material cost increases, and
changes in the political landscape (Hansen et al., 2024). For current wind energy development
projects, these complications have resulted in costs ranging from $50 million a week to $600
million total (McDermott, 2025). In this context, the cost of mitigation to reduce impacts on
critically endangered species is minimal. Additionally, we did not include the financial value of
individual right whales, provided through ecosystem services or their intrinsic value, in our
tradeoff analysis. The financial value of right whales would further justify the cost of mitigation
measures to reduce potential impacts.

Our tradeoffs framework is widely applicable to other species, sectors within the Blue Economy,
and mitigation scenarios. The conceptual power of our framework comes from simulating
construction while also quantifying the number of whales exposed to Level A and B takes.
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However, the ability to conduct the analysis is contingent upon the availability and amount of the
data required to fit a species distribution model and an understanding of the effectiveness of the
mitigation measure. For example, since the WEAs were designated in 2011, there has been
relatively consistent aerial survey effort to monitor the use of the area by marine mammals.
These surveys also incur a financial cost (approximately $500,000/year), albeit minimal relative
to the other costs we have detailed in our analyses. Lower levels of survey effort will decrease
the precision in density estimates, thereby reducing the utility of the results.

Humans are increasingly looking to the ocean for sources of renewable energy to mitigate the
broad and chronic impacts of climate change. While offshore wind energy development presents
an opportunity to reduce global greenhouse gas emissions and slow climate change, it is also part
of the increasing trend toward industrialization of the world’s oceans, which may have local and
acute impacts on wildlife. It is important to understand the human-wildlife conflicts that result
from development and how they can be moderated. To achieve a thriving Blue Economy, namely
one that balances economic growth with sustainable practices, more quantitative tools that assess
the tradeoffs between wildlife conservation and ocean industries are required.
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Abstract:

Climate change is profoundly impacting ecosystems worldwide. Offshore wind energy is an
important tool for reducing fossil fuel use and greenhouse gas emissions. However, wind energy
development, intended to mitigate the impacts of climate change, may have negative impacts on
large baleen whales. To mitigate these potential negative consequences, we need a detailed
understanding of whale distribution. Right whale density estimates are necessary to assess the
financial risk of right whale mitigation measures to wind energy development in the U.S. We
develop fine spatial and temporal resolution right whale density models for the
Massachusetts/Rhode Island Wind Energy Areas. We found that salinity, the interaction between
sea surface temperature and eight-day period, an interaction between the distance to the 30 m
isobath and eight-day period, and the interaction between the 40 m isobath and eight-day period
were the best predictors of right whale density (AIC =4812.22; AUC = 0.91; 64% explained
deviance). We then use general expectations of marine mammal downtime to assess the financial
risk of three right whale mitigation scenarios. The baseline scenario, which assumes construction
starts on May 1% and extends until completion of 70 monopile foundations, has an estimated cost
of $215,150,000. For the second scenario the construction start date moves to June 1% and has an
estimated cost of $378,780,000. In the third scenario, we assumed a second Big Bubble curtain
would be implemented, resulting in a cost of $235,150,000. Preliminary economic tradeoff
analyses (see our phase two report) combine predictions from our model and the financial risk
assessment. Future work will be done to finalize the economic tradeoff analysis approach.
Through our project, we intend to contribute to responsibly developing offshore wind energy,
while conserving right whales and successfully mitigating climate change.

Keywords: density surface model, renewable energy development, right whale, financial risk



Introduction

Climate change is profoundly impacting ecosystems worldwide, and these effects are expected to
continue and, in some cases, amplify over the next century (Intergovernmental Panel On Climate
Change, 2023). Marine ecosystems are experiencing unprecedented warming, reductions in sea
ice coverage and dissolved oxygen levels, ocean acidification, sea level rise, and weakening
circulation patterns (i.e. Atlantic Meridional Overturning Circulation)(Garcia-Soto et al., 2021).
These changes to the physical environment can lead to changes in the abundance, phenology, and
distribution of animals at higher trophic levels. For example, thermal changes have led to
increased mortality and reduced recruitment of Atlantic cod Gadus morhua (Pershing et al.,
2015), and declining prey availability and reduced reproductive success in both southern right
whales (Eubalaena australis) and the critically endangered North Atlantic right whale
(Eubalaena glacialis) (Meyer-Gutbrod et al., 2021; Vermeulen et al., 2023). Significant shifts in
migratory timing, related to changes in the timing of warming and sea ice dynamics, has been
observed in several cetacean species (Pendleton et al., 2022; Ramp et al., 2015; Shuert et al.,
2022; van Weelden et al., 2021). Changes in animal distribution resulting from climate change
that are most relevant to this study are poleward shifts to follow preferred water temperatures for
many fish stocks and cetaceans (Lucey and Nye, 2010; Nye et al., 2009; van Weelden et al.,
2021). For example, a climate induced poleward shift in right whale distribution resulted in a
mass human-caused mortality event (Davies and Brillant, 2019).

Mitigating climate change is one of the biggest conservation issues of our time. Offshore wind
energy is an important tool for reducing fossil fuel use and greenhouse gas emissions. The US is
on track to have 27 GW deployed by 2025 (The White House, 2023) with a Biden administration
goal of deploying 30 GW by 2030 (The White House, 2022). While, there are still considerable
knowledge gaps surrounding the impacts of offshore wind energy development on wildlife
(Allison et al., 2019; Kraus et al., 2019) negative impacts can include habitat loss and increased
risk of collision mortality with turbines. For example, several studies have documented
decreased occurrence of harbor porpoise (Phocoena phocoena), from baseline levels, during the
construction of offshore wind farms (Benhemma-Le Gall et al., 2021; Brandt et al., 2018;
Haelters et al., 2015). In addition, loons (Gavia spp.) were displaced from offshore wind farms
after construction resulting from both turbines and the increased vessel traffic required to
maintain the turbines (Mendel et al., 2019). Collision mortality with wind turbines for birds and
bats has been widely documented (Allison et al., 2019; Lloyd et al., 2023; Loss et al., 2013).

Wind energy, intended to mitigate the impacts of climate change, may have negative impacts on
large baleen whales. Historically, southern New England (the area south of Nantucket and
Martha’s Vineyard), was a prolific whaling ground, dating back to the 1600’s, with right whales,
sperm whales (Physeter macrocephalus), and humpback whales (Megaptera novaeangliae)
being the primary targets (Reeves et al., 1999). Small numbers of right whales were documented
in southern New England during the 20" century, but habitat suitability models, developed for
the early 2000s, indicated the area could be an important right whale feeding habitat (Pendleton
et al., 2012). Aerial surveys, specifically designed to monitor the area prior to wind energy
development, began in 2011 (Leiter et al., 2017; Stone et al., 2017), and in 2013, the Bureau of
Ocean Energy Management (BOEM) designated two areas in southern New England (i.e. the
Massachusetts/Rhode Island Wind Energy Areas (MA/RI WEAs)) for offshore wind



development. These surveys documented a number of cetacean species that are afforded
protection by the Endangered Species Act and/or the Marine Mammal Protection Act, including
the critically endangered right whale, which has increased in abundance in the area since the
surveys began (O’Brien et al., 2022). We are currently at a crossroad where we need to figure
out how to responsibly develop offshore wind and conserve right whales.

To mitigate the potential negative consequences of wind energy development, we need a detailed
understanding of whale distribution. This understanding can be obtained using species
distribution models. While distribution models have been developed for cetacean species on the
U.S. East Coast (Roberts et al., 2016), these models capture coast-wide habitat relationships that
may miss important distribution patterns and environmental features at smaller scales.
Determining the appropriate spatial and temporal scale for modeling requires balancing what
might be biologically relevant for the species with factors that are relevant for conservation
management. For example, a study comparing the effects of grid cell size on nine species found
that model accuracy and the agreement of range location declined as grid cell size increased, and
that species range size is an important consideration when choosing grid cell size (Seo et al.,
2009). However, regional habitat models for cetaceans, designed to test the impact of spatial
scale on species-environment relationships, have ambiguous conclusions (Becker et al., 2010;
Jaquet and Whitehead, 1996; Redfern et al., 2008). For example, Redfern et al., (2008) found
that the relationship between four dolphin species and their environment did not vary with spatial
scale; the authors hypothesized that domains of scale exist wherein the species-environment
relationship does not change. In contrast, Jaquet and Whitehead found that the relationship
between sperm whales and their environment were only apparent at large spatial scales (Jaquet
and Whitehead, 1996).

Right whale density estimates are necessary to assess the financial risk of right whale mitigation
measures to wind energy development in the U.S. Currently, estimates of right whale density are
available as monthly averages over long-time periods and are made using models developed for
the entire U.S. east coast (Roberts et al., 2016). The goal of our study is to develop fine spatial
and temporal resolution models for the MA/RI WEAs using the long time series of systematic
aerial survey data collected by the New England Aquarium and combine those estimates with the
financial risk assessment in a tradeoff analysis. In this report we use general expectations of
marine mammal downtime to assess the financial risk of three right whale mitigation scenarios.
We have conducted preliminary economic tradeoff analyses (see our phase two report) that
combine predictions from our model and the financial risk assessment. In the remainder of this
project, we will finalize the economic tradeoff analysis approach. Through our project, we intend
to contribute to responsibly developing offshore wind energy, while conserving right whales and
successfully mitigating climate change

Methods

Aerial surveys and data preparation

Whale sightings were collected during aerial surveys, flown approximately twice monthly, in
Southern New England between 2011 and 2023 (Figure 1). Three types of surveys were flown:
General, Directed, and Condensed. General surveys were standardized line-transect surveys



flown on a monthly basis. Twelve north-south tracklines were evenly spaced at approximately 6
nautical miles (nm). One of eight survey options was randomly selected prior to each survey.
Each option shifts all 12 tracklines 0.75 nm east or west, while maintaining the 6 nm spacing.
Directed surveys were flown in areas of known right whale aggregations. These surveys
followed line-transect protocols, but the area surveyed and number of lines varied based on the
location of the right whale aggregations. Condensed surveys were standardized line-transect
surveys but were comprised of 10-12 tracklines spaced 3 nm apart. Aerial surveys were flown at
a ground speed of 185 km/h and an altitude of 305 m, in either a Cessna Skymaster 337 O-2A or
a Partenavia P68 aircraft. Data indicating trackline effort were recorded every 2-5 seconds. Two
observers, one on either side of the airplane, scanned their field of view for marine mammals, sea
turtles, vessels, and fishing gear. Sightings were recorded when they were perpendicular to the
airplane. Marks on the wing struts or an inclinometer were used to record information about the
distance of the sighting from the trackline. When right whales were sighted, the plane diverted
from the trackline to obtain photo-identification data.

To use the aerial survey data in density surface models (DSMs), sections of aerial survey
tracklines with uninterrupted survey effort were separated into approximately 4.6 km segments.
We determined how many 4.6 km segments were contained in the uninterrupted survey effort. If
the remaining effort was < 2.3 km long, we randomly selected one segment to include the target
4.6km of effort and the remaining amount of effort. If the remaining effort was > 2.3 km, we
randomly selected one segment to have a target distance equal to the remaining amount of effort.
If the entire section of uninterrupted survey effort was < 4.6 km, it was treated as a single
segment. We then summed the point-to-point distances to make segments totaling each target
distance. However, the sum of the point-to-point distances was not always equal to the target
distance. To avoid biasing the segment lengths, we randomly determined if the segment should
be slightly longer or shorter than the target distance. We also summarized the number of whale
sightings and the number of whales in a group for each segment.

To estimate right whale density, we used a multi-step modeling approach. The first step included
fitting a detection function and estimating the effective strip width. The details of this process
can be found in (O’Brien et al., 2022). Briefly, we used the Distance package in R to fita
detection function using data from 2011-2023 using a hazard rate model (R Core Team, 2022)
(Miller et al., 2019). The effective strip width was estimated at 0.72 km. The second step in the
modeling process included fitting generalized additive models (GAMs) to capture the
relationship between the number of right whales observed on a segment and oceanographic
predictor variables (described below). GAMs were estimated using the dsm package in R (Miller
etal., 2013). We used a tweedie distribution in these models. Parameter estimates were
optimized using restricted maximum likelihood (REML). Thin plate regression splines were used
to model the relationship between individual environmental variables and right whale density.
Relationships between right whale density and interactions between variables were modeled
using tensor splines. Density (D) was estimated as:

D; = (ni/Ly) * 7(ESW) *g(0)



Where n is the number of animals on segment i and L is the length of the segment (km). ESW is
the effective strip half width estimated at 0.72 km. We assumed perfect detection on the trackline
(i.e., g(0) =1). An offset was used in the GAMs to include the natural log of the effective area
searched.

Oceanographic predictors of right whale density

We used DSMs to model right whale density as a function of oceanographic variables. All the
oceanographic variables were standardized on a 4.6 km grid, over eight-day periods.
Oceanographic data were associated with the midpoint of each trackline segment.

Right whales have been observed over a wide range of depths, but the preferred depths vary by
habitat. In the Gulf of Maine, right whales regularly occur in waters 100 to 200 m deep.
However, in Cape Cod Bay, which is a prolific spring feeding ground, right whales occur in
waters that are only 18 to 60 m deep. We used 0.00083° resolution depth data from the Northeast
Coastal Relief Model V1 (National Geophysical Data Center, 1999) as a predictor variable in our
DSMs. It is also possible that bathymetric features (e.g., isobaths), which cause thermal fronts
and aggregate zooplankton, have a stronger influence than depth on right whale distributions. We
calculated the distance from each segment midpoint and the center of each oceanographic grid
cell to the 30, 40, and 50 m isobath using the marmap package in R (Pante and Simon-Bouhet,
2013).

Right whales primarily feed on Calanus finmarchicus. Chlorophyll a concentration can be used
as a proxy for phytoplankton, the prey of C. finmarchicus. We used Aqua MODIS Global
Mapped Chlorophyll data sampled at eight-day intervals and a 4 km spatial resolution (NASA
Ocean Biology Processing Group, 2017).

In Cape Cod Bay, abundance of C. finmarchicus and Centropages typicus, a second right whale
food source, were found to be correlated with salinity (DeLorenzo Costa et al., 2006). We
obtained four-day salinity data on a 1/4° grid from the Multi-Mission Optimally Interpolated Sea
Surface Salinity Global Dataset V1 (IPRC/SOEST, 2021).

Previous studies have found the winter distribution of right whales to be largely determined by
sea surface temperature (SST), although the mechanism for this influence is unclear (Pendleton
et al., 2012). We obtained daily SST data on a 0.01 ° grid from the GHRSST Level 4 MUR
Global Foundation Sea Surface Temperature Analysis (v4.1) (NASA/JPL, 2015).

We created eight-day, 4.6 km prediction grids, over the spatial extent of the combined aerial
survey and acoustic effort (Figure 1). We assessed model fit by visually inspecting q-q plots and
using the root mean squared error (RMSE). We compared models using the receiver operating
characteristic curve (AUC; Fawcett, 2006) and Akaike’s Information Criterion (AIC score).
Models with larger AUC values have a better fit, while lower AIC scores indicate models with
more support. Ultimately, we used AIC scores to determine the model with the most support. We
used the model with the most support to predict right whale density over our prediction grids. To
ensure extrapolation errors did not occur in our density predictions, we visually inspected



histograms of the environmental data used for model fitting against the environmental data used
to make predictions.

Variance was estimated using the methods outlined by (Miller et al., 2022). Because our
detection function model did not have any predictor variables, we were able to use the delta
method to propagate the uncertainty in detectability into the GAM. We then extracted 10
posterior samples, with a multivariate normal assumption, from the GAM parameters () and
covariance matrix. For each eight-day period we calculated the predicted abundance for each
grid cell 10 times (i.e., one abundance estimate per grid cell for each of the B samples). We then
used the Welford method to summarize the variance for each grid cell at each time period.

Model Validation

We used the acoustic survey data to validate the models fit with visual survey data. Acoustic
surveys were conducted using a network of marine autonomous recording units (MARUs) by the
Cornell Lab Center for Conservation Bioacoustics. These surveys were funded by the
Massachusetts Clean Energy Center. Bottom-mounted MARUs were deployed from November
2011 through March 2015 and recorded continuously during their deployment. The MARUs
were suspended 3 meters above the seafloor. We used upcalls to determine right whale presence.
The MARU detection range varies by the amount of background noise (Estabrook et al.,

2022). Under median (50" percentile) noise conditions in the right whale communication
frequency band (upcalls, 71-224 Hz), the detection range is estimated to be 8 km. Under low (5%
percentile) noise conditions, the detection range is estimated to be 22 km (Estabrook et al.,
2022). We used a Spearman correlation to determine the relationship between right whale
density and the number of right whale upcalls for each eight-day period that acoustic data were
available.

Assessing financial risk

We compare three wind energy development scenarios: one baseline scenario (i.e., business as
usual) and two right whale mitigation scenarios. The baseline scenario reflected a realistic
schedule for the foundation installation campaign and assumes that pile-driving begins on May
Ist, 2025. The schedule includes both weather downtime and general expectations for marine
mammal downtime (MMD). The second scenario shifts the start date of the monopile installation
campaign back one month, from May 1st to June 1st, 2025, and excludes December as a feasible
pile-driving month. The third scenario utilizes an additional method of noise attenuation during
pile driving, in the form of a second bubble curtain working with the first bubble curtain to
further enhance noise attenuation and shrink the harassment zones surrounding the piles.

Technical Assumptions

The hypothetical wind farm contains 70 turbines with an assumed 10.3-meter diameter monopile
foundation and transition piece. The foundation diameter is reflective of industry trends towards
larger wind turbines—the largest foundations to be installed in the next few years are of this
size. Monopile foundations will be constructed using an industry standard piling technique. This
method involves dropping a hammer onto the monopile foundations to drive them into the stable
seabed. It is this specific activity that results in the most noise and will be delayed should a right
whale or other marine species be sighted near a construction site.



Other logistical assumptions we have used in the calculation of downtime include a 12-hour
workable day for each day of the year, no piling in the months of January through April and little
to no knock-on impact on the rest of the project activity durations. The 12-hour working day is
based on the current regulation that piling activities cannot occur during nighttime hours. Current
regulations also state that piling of this nature is restricted during the winter season, January 1
through April 30th. Our downtime calculations only consider the activities associated with the
installation of foundations, including the activity of lifting and hammering the monopile to
completion. The foundation campaign is isolated to accurately calculate the additional downtime
from wind, waves, and marine mammals. As a stand-alone campaign, it is assumed that there is
no impact to other campaign durations, specifically turbine and array cable installation, in the
context of a full construction schedule.

In keeping with methods used by developers to generate installation schedules, we used
Primavera P6 to create a schedule with activity durations that are appropriate for the site of
interest. Primavera P6 is an industry standard project scheduling tool, similar to an Excel
spreadsheet. The advantage of P6 is that individual activities can be defined with logical,
temporal links to one another. Changing the date of one activity will shift all the activities in the
chain, which allows for detailed planning analysis to be conducted.

For each of the three foundation installation scenarios, the downtime and assumptions were
defined and assessed to estimate the financial risks and costs associated with each schedule.
Weather downtime was determined through LAUTEC’s weather downtime modeling tool
ESOX. ESOX is a probabilistic model that has been trained by over a decade of data from
offshore wind projects and decades of regional weather data. ESOX generates weather downtime
results for multiple cases, including: the best weather year, the P30 case, the P50 case, the P90
case, and the worst weather year. The P50 case is representative of annual average weather at a
particular location, and is typically the weather condition that is considered when building a
project schedule. The P30 case is usually too optimistic, while the P90 is too conservative.
ESOX provides weather downtime as a combination of both downtime due to adverse weather
causing a stall in installation activities and downtime due to the nighttime pile-driving restriction.
For a monopile installation to commence, a window with both daylight and compatible weather
is required. As pile-driving requires daylight so that protected species observers can monitor for
marine mammal presence, pile-driving is put on standby overnight until the daylight window
returns the following morning. The durations from the Primavera P6 schedule were used as
inputs into the ESOX model, with the output being the project schedule, inclusive of the total
downtime due to adverse weather and the nighttime pile-driving restriction. The four
construction durations for each of the three scenarios were then assigned a cost. Additionally, the
cost of all vessels and mobilization were estimated on top of the total daily cost.

Cost Assumptions

Many cost assumptions were necessary due to the nascent offshore wind industry in the US, the
quickly changing prices in the global offshore wind economy, and the varying approaches to a
logistical setup for foundation installation. Regardless of the above conditions, the largest cost
element for this part of foundation installation is the use of a Heavy-Lift Vessel (HLV). We have
also selected to include the cost of project resources, and two guard vessels. It is assumed that



the same HLV performing the installation will also sail to port to load out batches of components
and bring those components back to the offshore site. The costs associated with these vessels
alongside project resources can be viewed in Table 2. These costs were utilized in conjunction
with the campaign durations to determine the total daily costs for a P30, P50, PSO+MMD, and
P90 downtime scenario.

Results

Aerial surveys and data preparation

The aerial surveys used in this analysis occurred over 211 days. We chopped 105,443 km of
aerial survey data into 22,979 segments, with the majority (86.8%) between 4 and 5 km. The
remaining segments were approximately equally divided into segments <4km (5.78%) and >5km
(7.41%). Right whales were sighted on 183 of the 18,488 chopped segments. In total, there were
446 right whale sightings of 810 individuals with an average of 3.67 right whales per sighting.

Oceanographic predictors of right whale density

We tested seven DSMs to predict right whale density (Table 1). The model with the most relative
support included salinity, an interaction between SST and the eight-day period, an interaction
between the distance to the 40 m isobath and the eight-day period, and an interaction between the
distance to the 30 m isobath and the eight-day period (AIC = 4812.22; Table 1, Figures 2,3,4,
and 5). This model also had the highest AUC (AUC = 0.91; Table 1) and explained 64% of the
deviance.

There was a significant non-linear relationship between right whale density and all the variables
in the model (i.e., p < 2e-16 for each covariate). Right whale density decreased as salinity
increased until salinity reached ~32.6 psu. Right whale density increased at salinity values
between ~32.6 and 33.6 psu, and then decreased at salinity values higher than 33.6 psu (Figure
2). The relationship between right whale density and SST depends on the time of year (Figure 3).
There is relatively high right whale density at relatively low SSTs and low right whale density at
high SSTs early in the year. However, by the end of the year, right whale density is highest in the
middle of the SST range. The relationship between right whale density and the distance to the 40
m isobath is also dependent on the time of year (Figure 4). Early in the year, right whale density
is highest close to the isobath and decreases as distance to the isobath increases. However, in the
middle of the year, density is evenly spread throughout distance ranges to the isobath. By the end
of the year, density is high and evenly distributed across all measured distances. The relationship
between right whale density and the distance to the 30 m isobath is also dependent on the time of
year (Figure 5). The relationship between right whale density and distance to the 30 m isobath
was similar to that of the 40 m isobath except in the middle of the year right whale density was
higher at greater distances from the 30 m isobath, and later in the year right whale densities were
lower at greater distances from the 30 m isobath.

We used our model to generate right whale density predictions for each eight-day period from
2011 through 2023. Example prediction maps showing the monthly mean of the eight-day



periods for 2019 and 2021 can be found in Figure 6. In the winter and spring of both years,
predicted right whale density is highest along the 30 and 40 m isobaths (i.e. the northeast corner
of the prediction box). Predicted density decreases during the summer months, however,
densities are still predicted to be greater than 0 southwest of Nantucket along the 30 and 40 m
isobath. In the fall months predicted density increases again, predominantly in the northeast
corner of the prediction box. Density predictions tightly aligned with right whale sightings made
during New England Aquarium aerial surveys.

Variance

Uncertainty in the density estimates can arise from several components of the modeling process
including detectability, the smooths used in the GAMs, and variability in environmental
covariates. We estimated uncertainty for each of the components and propagated this uncertainty
through the analysis. Our detection function was estimated without covariates, as in O’Brien et
al., 2022. Therefore, detectability did not vary spatially, as such the delta method was used to
estimate the uncertainty (CV = 0.13). We then propagated the estimated uncertainty in the
detection function with the uncertainty in the GAM component (CV = 0.25), the estimated CV
for the combined components was 0.29.

Validation

We found a significant positive correlation between the number of right whale upcalls and the
right whale density estimates (rho = 0.45, p =1.0e™"").

Assessing financial risk

The goal of this financial risk assessment was to define the associated costs of three foundation
installation scenarios that offshore wind developers may encounter. It is important to note that
the exact assumptions presented in the assessment will be different from project to project and
depend on factors such as number and type of vessels utilized, contractual obligations, and
location. The methodology and results presented can be tailored to each project by adjusting
these assumptions as necessary.

Costs and Financial Risks

The baseline scenario assumes construction starts on May 1% and extends through the spring,
summer and fall months until completion of 70 monopile foundations. Without weather
considerations, the ESOX simulation for the base case took 117 days. When considering the
most likely P50 weather downtime scenario in addition to the estimated MMD, the campaign
duration becomes 230 days. The estimated cost of a P50 plus MMD case for the baseline
scenario is $215,150,000.

For the second and third scenarios, the general assumptions above remain the same, except the
construction start date moves from May 1* to June 1* in the second scenario. This scheduling
change has the potential to impact campaign duration and average duration per position because
of the risk of a split campaign across multiple years when weather downtime and MMD are
taken into account. Concomitantly, the possibility of a split campaign affects the total daily cost.
We found that under the second scenario, a P90 and a P50 weather scenario plus MMD resulted



in a split campaign and, therefore, a higher cost than the same downtime cases for the baseline
scenario. The estimated cost of a P50 plus MMD case for the second scenario is $378,780,000.
The durations and total costs for the baseline and second scenarios can be found in Tables 3 and
4, respectively.

In the third scenario, we assumed a second Big Bubble curtain would be implemented to reduce
the noise attenuation of the foundation piling activities. The addition of a bubble curtain has no
impact on the duration of the piling activity compared to the baseline scenario because it is
assumed that the bubble curtain installation campaign will occur prior to foundation installation.
While there is no impact to the schedule, it is estimated that the cost for a bubble curtain for one
installation season (May — December) would be approximately 20 million USD. This cost is
added on top of the baseline scenario costs as seen in Table 5. The estimated cost of a P50 plus
MMD case for Scenario three is $235,150,000.

Discussion

We have successfully developed a right whale density surface model for the MA/RI WEAs at
spatial and temporal scales that are biologically relevant, but also applicable to wind energy
developers attempting to estimate the financial risk associated with their construction projects.
In addition, we estimated the financial risk associated with three wind energy development
scenarios, while considering potential weather downtime and general expectations for marine
mammal downtime. We have conducted preliminary economic tradeoft analyses (see our phase
two report) that combine predictions from our model and the financial risk assessment. Future
work will include finalizing the economic tradeoft analysis approach. Through our project, we
intend to contribute to responsibly developing offshore wind energy, while conserving right
whales and successfully mitigating climate change

The best oceanographic predictors of right whale occurrence in the MA/RI WEAs were salinity,
an interaction between distance to the 40 m isobath and time of year, an interaction between
distance to the 30 m isobath and time of year, and an interaction between SST and time of year.
Salinity gradients, a proxy for density gradients, indicate a stratified water column. The vertical
surfaces in stratified water columns can coalesce hyper-concentrated patches of zooplankton, a
requirement for right whale foraging behavior. Bowhead whales (Balaena mysticetus), a species
with similar foraging behaviors to right whales, have been documented feeding along salinity
gradients concurring with large congregations of zooplankton (Moore et al., 1995). Other studies
have found salinity to be an indicator of right whale habitat (Baumgartner and Mate, 2005), and
correlated with C. finmarchicus biomass (Sorochan et al., 2019).

Pendleton et al. 2012 found support for the hypothesis that right whale habitat preferences are
dynamic. Our results lend further support to this argument. We found that the effect of SST,
distance to the 40 m isobath, and distance to the 30 m isobath changes depending on the time of
year. Our SST results mirror those of Pendleton et al. 2012 who found that right whale sightings,
in the same but larger geographical region, were associated with temperatures below 4 °C in the
winter, and between 4 and 12 °C in the spring. The relationship between right whale density and
distance to the 30 and 40 m isobaths was dependent on time of year. Pendleton et al. 2012 also



found the relationship between bathymetry and habitat use to be dependent on time of year, in
the same but larger geographical region. In Southern New England, the 30 and 40 m isobaths
outline the Nantucket Shoals, which has strong tidal flow over the sloping bathymetry of the
1sobaths. This coupling of tidal flow and bathymetry often generates internal waves that can
cause shoaling of the pycnocline and associated zooplankton layers that may persist for hours
(e.g. Lai et al., 2010). These habitat preferences, which vary based on the time of year, may
reflect, in part, the complicated life cycle of C. finmarchicus, in addition to the seasonal
variations in right whale behavior (e.g., migrating vs. foraging).

We were able to estimate the costs incurred by adding mitigation techniques (i.e., the second and
third scenarios) during wind energy construction. The work presented here represents an
important step for understanding the financial risks that come with right whale mitigation during
wind energy development. Renewable energy is an important component of meeting global goals
to reduce the effects of climate change after decades of fossil fuel usage. However, renewable
energy cannot be developed at the expense of wildlife conservation. To successfully develop
renewable energy and protect wildlife, we must work with stakeholders to develop tools that can
be used to explore trade-offs between the financial risks to renewable energy development and
wildlife conservation strategies.
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Figure 1: Aerial survey effort used to predict right whale density. White lines are tracklines
flown by the New England Aquarium aerial survey team between 2011 —2022. The area to be
predicted over is outlined in red. The Massachusetts / Rhode Island Wind Energy Area is
outlined in black.
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Figure 2: Partial effects of salinity on right whale density according to the model with the most
support. The gray shading represents 95% confidence intervals for the mean effect. The
distribution of the data is represented by the ticks at the bottom of each plot.



Figure 3: Partial effects of the interaction between sea surface temperature (SST) and time of
year (eight-day period) on right whale density according to the model with the most support.

Figure 4: Partial effects of the interaction between distance to the 40 m isobath and time of year
(eight-day period) on right whale density according to the model with the most support.



Figure 5: Partial effects of the interaction between distance to the 30 m isobath and time of year
(eight-day period) on right whale density according to the model with the most support.
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Figure 6: Eight-day right whale density predictions for the Massachusetts / Rhode Island Wind
Energy Area prediction box summarized by month for (a) 2019 and (b) 2021. White dots are
right whale sightings made by the New England Aquarium's right whale aerial survey team.
Each dot represents one right whale. There were no New England Aquarium aerial surveys from
September-December 2019 November-December 2021.



Table 1: Density surface models used to predict right whale density. The model with distance to
the 30 m isobath dependent on time of year, distance to the 40 m isobath dependent on the time
of year, sea surface temperature (SST) dependent on the time of year, and salinity had the lowest
Akaike Information Criterion (AIC) score and is the model with the most support. This model
also had the highest Area Under the Receiver Curve (AUC). We used root mean squared error
(RMSE) as a test of goodness-of-fit. Models with RMSE values between 0 and 1 are considered
to fit sufficiently.

Table 2: The vessel and resource costs associated with our baseline scenario, which is a generic
foundation installation campaign that assumes one heavy lift vessel (HLV) and two guard
vessels.

Package Activity Cost (USD)
Foundations Foundation HLV $765,000
General Project Resources $20,000
General Guard Vessel 1 $10,000
General Guard Vessel 2 $10,000

Table 3: The campaign durations and total costs for the baseline scenario. The values for an
ideal, no weather case is provided. The P30 weather case represents the best case, P50 represents
the most likely weather downtime case, and P90 the worst case. PS0+MMD represents the most
likely weather case and a general expectation for marine mammal downtime. Additionally, the
start and end dates for each weather case are provided to show whether there is a risk for the
campaign to continue into the following year due to time of year restrictions.



Table 4: The campaign durations and total costs for the second scenario, in which there is a
month shift in start date. The values for an ideal, no weather case is provided. The P30 weather
case represents the best case, P50 represents the most likely weather downtime case, and P90 the
worst case. PS0+MMD represents the most likely weather case and a general expectation for
marine mammal downtime. Additionally, the start and end dates for each weather case are
provided to show whether there is a risk for the campaign to continue into the following year due
to time of year restrictions.

Table 5: The campaign durations and total costs for the third scenario, where a second bubble
curtain is added. The values for an ideal, no weather case is provided. The P30 weather case
represents the best case, P50 represents the most likely weather downtime case, and P90 the
worst case. PS0+MMD represents the most likely weather case and a general expectation for
marine mammal downtime. Additionally, the start and end dates for each weather case are
provided to show whether there is a risk for the campaign to continue into the following year due
to time of year restrictions.
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