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Acronyms and Abbreviations 
AEP  annual energy production 
BOEM  Bureau of Ocean Energy Management 
CC  cumulative curl 
FLORIS  FLOw Redirection and Induction in Steady State 
GCH  Gauss curl hybrid 
GW  gigawatt 
IEA  International Energy Agency 
LCOE  levelized cost of energy 
MW  megawatt 
nm  nautical mile 
NREL  National Renewable Energy Laboratory 
ORBIT  Offshore Renewables Balance-of-System and Installation Tool 
SCADA  supervisory control and data acquisition 
SOWFA  Simulator fOr Wind Farm Applications 
TI  turbulence intensity 
WRF  Weather Research and Forecasting 

  



 

3 
   

Notice 
 
This report was prepared by Paul Fleming in the course of performing work contracted for and 

sponsored by the National Offshore Wind Research and Consortium (NOWRDC), New York 

State Energy Research and Development Authority (NYSERDA), and the U.S. Department of 

Energy (hereafter the “Sponsors”). The opinions expressed in this report do not necessarily 

reflect those of the Sponsors or the State of New York, and reference to any specific product, 

service, process, or method does not constitute an implied or expressed recommendation or 

endorsement of it. Further, the Sponsors, the State of New York, and the contractor make no 

warranties or representations, expressed or implied, as to the fitness for particular purpose or 

merchantability of any product, apparatus, or service, or the usefulness, completeness, or 

accuracy of any processes, methods, or other information contained, described, disclosed, or 

referred to in this report. The Sponsors, the State of New York, and the contractor make no 

representation that the use of any product, apparatus, process, method, or other information will 

not infringe privately owned rights and will assume no liability for any loss, injury, or damage 

resulting from, or occurring in connection with, the use of information contained, described, 

disclosed, or referred to in this report. 

NYSERDA makes every effort to provide accurate information about copyright owners and 

related matters in the reports we publish. Contractors are responsible for determining and 

satisfying copyright or other use restrictions regarding the content of reports that they write, in 

compliance with NYSERDA’s policies and federal law. If you are the copyright owner and 

believe a NYSERDA report has not properly attributed your work to you or has used it without 

permission, please email print@nyserda.ny.gov 

Information contained in this document, such as web page addresses, are current at the time of 

publication. 
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1. Introduction 
 
U.S. offshore wind energy is expected to grow rapidly in the coming years with a national goal of 30 gigawatts 

(GW) by 2030 (The White House 2021; Musial et al. 2022). Wake losses are expected to be significant in U.S. 

offshore locations where low-turbulent conditions are prevalent (Bodini, 2019). For the original U.S. East 

Coast lease areas (excluding the 2022 additions in New York Bight), modeling with the Weather Research and 

Forecasting (WRF) model calculated total wake losses of more than one-third of annual electricity production 

(AEP) with wakes extending more than 90 km (Pryor, Barthelmie, and Shepherd 2021). In a more recent study 

(Rosencrans et al. in review), internal wake losses (wake losses within a wind farm, not caused by the wake 

of other wind farms) for a U.S. offshore wind farm in the mid-Atlantic were modeled to reduce annual 

power production by 27.4%.  

Wind farm control is technology that coordinates the control activities of individual wind turbines within a 

wind farm to maximize farm-level performance, often by reducing wake losses. One implementation of wind 

farm control is wake steering (Wagenaar, Machielse, and Schepers 2012). Illustrated in Figure 1, wake steering 

uses an offset of the yaw position of the turbine with respect to the incoming wind direction to deflect and 

change a turbine’s wake to benefit downstream turbines. 

 
Figure 1. Illustration of wake steering at an offshore wind farm. On the left, an array of wind 
turbines is aligned to the incoming wind direction, with wakes impinging on downstream turbines. 
On the right, the same array applies wake steering such that the wakes are modified to reduce 
wake losses downstream. 
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Previous studies of wind farm control for land-based wind farms demonstrated the effectiveness of the 

technology. For example, field campaigns such as Fleming et al. (2020) and Simley et al. (2021) have shown 

that wake steering can effectively reduce wake losses in practice, increase energy yield, and test the 

accuracy of the wind farm control models used in the design of wake-steering controllers. Further, 

Bensason et al. (2021) used the same engineering models validated in the field campaigns to assess the 

potential across U.S. land-based wind farms and found a typical potential to reduce wake losses by 

13.85%, increasing expected AEP by 0.8%. 

Previous studies have mostly been applied to already built commercial wind farms; however, it is likely there 

is greater potential benefit for offshore wind farms. First, the high expected wake losses presented in 

Rosencrans et al. (in review) illustrate a larger opportunity for energy uplift in offshore farms versus land-

based farms. Second, when applied to already existing farms, wake loss reduction strategies can only 

mitigate the already set annual wake losses. However, when incorporated into the design of a new wind 

farm, wind farm control can be used in the overall optimization of value to maximum benefit. 

The purpose of this project is to investigate how wind farm controls and layout optimization can be used to 

benefit U.S. offshore wind farms. Note that this work focuses on fixed-bottom offshore turbines and does not 

consider issues specific to floating turbines, such as drift in position or wake impacts of floating motion.  A 

partnering project, CONFLOWS, looks at these topics with respect to floating offshore wind farms (Slater 

2021). 

We consider both increases in AEP and reductions in levelized cost of energy (LCOE). We also show that 

wind farm controls can have impacts on revenues for offshore wind farms, which exceed the impacts on AEP. 

The project was divided into three main phases. The first was establishing engineering models of wind turbine 

wakes and wind farm control that are calibrated for U.S. offshore wind farms. The second was using these 

calibrated models in optimizations over potential layout configurations and wind farm control strategies. In the 

third effort, the results of the optimizations were compared with respect to energy production and LCOE and 

revenue. 

Details on each of the tasks for this project are provided in the task reports. This final report provides an 

overview of those results, final summary, and interpretation of findings. We believe an essential outcome of 

this work is that wind farm control should be considered an important tool for increasing the total energy 
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production and revenue of U.S. offshore wind farms. Control will be especially valuable if wind farms are 

designed to maximize the energy production of a given lease area. 
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2. Engineering Model Calibration 
 
To assess the potential for wind farm control and layout optimization, an engineering model of wind farms is 

required. In this work, we use FLOw Redirection and Induction in Steady State (FLORIS), a wakes and wake-

steering model (NREL 2022). FLORIS is an open-source software framework, developed and maintained by 

the National Renewable Energy Laboratory (NREL), that includes both the models and optimization tools 

required for this work. FLORIS has been used in the design of wake-steering controllers (Fleming et al. 2020; 

Simley et al. 2021) and in assessing how wake steering benefits land-based wind farms (Bensason et al. 

2021). 

For this work, a necessary step to performing the optimization studies was to develop models of wakes 

and wake steering within FLORIS that were calibrated to offshore wind turbines and specifically to U.S. 

offshore conditions. We subdivided this work into three aspects. First, we selected three U.S. offshore 

locations to study and produced atmospheric models of the locations as inputs to the FLORIS engineering 

model. Second, we calibrated the wake models in FLORIS to existing offshore wind farms. Third, we 

calibrated the wake-steering models in FLORIS to high-fidelity computer simulations. 

2.1 Modeling U.S. Offshore Locations 
To select the U.S. sites to analyze, we consulted with the project’s advisory board, which included 

members of the wind energy industry. The final selected sites are shown in Figure 2 and include a mid-

Atlantic site (Vineyard Wind Lease Area, as designated by the Bureau of Ocean Energy Management 

[BOEM]), a Pacific site (Humboldt Call Area, as designated by BOEM), and a Hawaiian site (South Oahu 

Call Area, as designated by BOEM) (BOEM Undated[a, b, c]). These sites are expected to be among the 

first developed for wind energy in their respective regions. 
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Figure 2. Map of the selected U.S. sites. The Weather Research and Forecasting model simulation 
domains are shown (white outline), as well as the chosen wind farm location within each domain. 
 
 
Atmospheric inputs to FLORIS for each site were provided using simulations performed with the WRF 

model (NCAR 2023). For the sites shown in Figure 2, we performed new WRF simulations that leveraged 

the same model setup currently used to produce state-of-the-art, 20-year, offshore wind resource data sets 

for U.S. waters (NREL 2021). One-year simulations were performed for each of the sites, with the 

simulation years chosen based on monthly analysis of wind speed. We selected the year between 2000 

and 2020 that best represents the mean seasonal cycle of wind speeds. The domains simulated for each 

site are indicated by the white outlined areas in Figure 2. 

In Section 2.2, we discuss calibrating the engineering model to offshore supervisory control and data 

acquisition (SCADA) data. These data were obtained from three offshore European Union wind farms: 

Anholt, Westermost Rough, and Windpark Egmond aan Zee (OWEZ) (Doekemeijer, Simley, and 

Fleming 2022). (At the time of this report there was no U.S. offshore wind farm SCADA data available to 

the authors). To compare the atmospheric conditions between the current European Union wind farms and 

the proposed U.S. wind farms, data equivalent to the WRF simulations were extracted for each European 

Union location from the New European Wind Atlas (Hahmann et al. 2020).  
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The Task 1 report for the project includes a detailed analysis of the results of this study comparing 

atmospheric conditions between the U.S. and European Union sites; however, some of the key findings 

for this analysis are represented in Figure 3, which shows the distributions of wind direction and 

turbulence intensity for each location, with the U.S. locations in the top three rows and the European 

Union locations in the bottom three rows. 

 
Figure 3. Comparing the distribution of wind direction and turbulence intensity (TI) for the 
locations considered at turbine hub height (165 m). Note that TI is an estimate, which is 
approximated using turbulent kinetic energy. 
 
FLORIS uses frequency tables of wind speed and wind direction to compute AEP given simulations of 

individual wind speed and wind direction bins, whereas turbulence intensity (TI) is used by the wake 
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models as a factor that influences wake recovery rates; higher TI is associated with faster recovery rates 

and lower wake losses. 

The wind direction results in Figure 3 show that while Vineyard is not too dissimilar from the European 

sites, both Humboldt and Hawaii show a high degree of concentration into a limited number of wind 

directions. This concentration will impact the layout optimization because it will provide very dominant 

wind directions to design to. In the case of Humboldt, the concentration of the wind rose into a dominant 

direction could be verified using lidar buoy data (Atmosphere to Electrons 2023).  

For TI, it is important to point out that the WRF model does not directly output TI, so these values are 

estimated based on turbulent kinetic energy and should only be considered for their relative comparison. 

These distributions show that for Vineyard and Humboldt, a higher percentage of data include low, or 

very low, TIs versus the European locations. This outcome aligns with the findings of Bodini, Lundquist, 

and Kirincich (2019).  Because we calibrate to European Union wind farms, there is potential that the 

wake losses at U.S. locations will still be higher. 

2.2 Calibration to Offshore SCADA Data 
In this phase, we compared the FLORIS model of wakes to three sets of data from offshore wind energy 

farms. Specifically, we compared the “Gauss curl hybrid” (GCH) (King et al. 2021) model of wakes and 

wake steering to each of the data sets, and the results were published in Doekemeijer, Simley, and 

Fleming (2022). 

Figure 4 represents a result observed in Doekemeijer, Simley, and Fleming (2022). In the figure, the 

energy ratio of a test wind turbine within the wind farm (indicated on the right) with respect to freestream 

unwaked wind turbines, is shown for different wind directions. For example, a value of 0.8 means that for 

this wind direction, the test turbine produces 80% of the energy of a freestream, or unwaked, turbine. 

Focusing on the comparison between the GCH model and SCADA data, Figure 4 shows that for wind 

directions where the test turbine is in the wake of a single turbine, the GCH model matches well to the 

SCADA data. However, for directions where the test turbine is in the rear of the farm and in the wake of 

many upstream turbines, GCH tends to overpredict energy production. This issue—the prediction of wake 

losses in the rear of a large offshore wind farm array—was identified in Doekemeijer, Simley, and 

Fleming (2022) as the primary discrepancy between FLORIS and SCADA data. Because much of 

FLORIS’ tuning has been to smaller subsets of farms, either because of limitations on sizes of high-
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fidelity modeling or initial field trials limited to a smaller number of turbines, the occurrence of the 

mismatch at the rear of large arrays makes some sense. 

In Bay et al. (2022), a new model of wakes, wake combination, and wake steering, known as the 

cumulative curl (CC) model, is introduced. Combining a new model of wind turbine wake superposition 

presented in Bastankhah et al. (2021) with a near wake model from Blondel and Cathelain (2020), the 

model of wake steering from GCH is presented. Referring now to the plot of the prediction of energy 

ratios for the same test turbine in Figure 4, a much better match to wake losses in the rear of the farm is 

obtained. Details of the model implementations are provided in Bay et al. (2022). 

 
Figure 4. Comparing the energy ratios observed in SCADA data for the Anholt wind farm for a test 
turbine (indicated as a blue dot) in the subplot to the right) relative to freestream turbines. Note, 
both models are almost equal in their ability to predict the wake losses for a single wind turbine 
(in the range of 100–150 degrees, the turbine is waked by one turbine at a time, whereas the match 
to SCADA is improved significantly by the cumulative curl (CC) model in the range of 180–330 
degrees, when the test turbine is in many overlapping upstream wakes. Adapted with permission 
from Bay et al. (2022) 
 

2.3 Calibration to High-Fidelity Computer Simulations 
At the time the project was conducted, there were no SCADA data from offshore wind farms performing 

wake steering; as a result, the wake-steering aspects of the models were compared to new high-fidelity 

simulations of wind farms implementing wake steering. 

The Simulator fOr Wind Farm Applications (SOWFA) was used to perform large-eddy simulations of 

wind farms (NREL undated). We simulated several models of gridded wind farms and generated the 

inflows to the wind farms to match specific periods of interest from the WRF simulations described in 

Section 2.1. With respect to wake deficit modeling, the SOWFA simulations agreed with the results of the 

SCADA analysis, with the CC and GCH models performing equally for a small number of wakes, and the 

CC model resolving the underprediction of wakes by the GCH model for larger numbers of combined 
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wakes. For wake steering, the two models are similar when modeling the effect of a single wind turbine 

performing wake steering. However, when assessing the uplift for a large array implementing wake 

steering, the SOWFA results tended to fall between the relative uplifts from the GCH (higher than 

SOWFA) and CC (less than SOWFA) models. These results are all provided and discussed in Bay et al. 

(2022). 
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3. Optimization Studies 
 

Following the calibration to offshore conditions, the FLORIS model can be applied to optimization 

studies of layout and wind farm control. The results of these studies are presented in this section. 

3.1 Layout Optimization 
 
The original proposal for this project was to analyze layout optimizations against a range of potential 

objective functions and against a range of hypothetical boundary areas of simple shapes. However, in 

consultation with the project advisory board, it was decided that a more relevant optimization would take 

the following approach:  

1. Adopt realistic boundary areas 

2. Assume a minimum interturbine spacing of 1 nautical mile (nm) 

3. Assume the wind turbines must be on a grid 

4. Optimize with respect to AEP. 

 
The reasoning behind the constraints, such as using a realistic boundary area and assuming the layout 

must be a grid, are that these are typical constraints of offshore wind farms, and we expect them to apply 

to the U.S. offshore locations for reasons such as shipping lanes. The selection of maximizing AEP as the 

objective of the layout optimization is an assumption that will be important in interpreting the results and 

will be discussed further. 

The boundary areas for each location are taken from BOEM offshore wind lease areas or call areas and 

are illustrated in Figure 5. It should be noted that in the case of Humboldt, the boundary modeled is not 

the final selection but one from an earlier report before the final decision (Option B in Cooperman et al. 

[2022]). Note that for the sake of computational tractability, the areas were downscaled such that a typical 

layout optimization could fit approximately 50 wind turbines into the area. We believe this compromise, 

which enables many more optimizations to run, still maintains the essential features of a large array. 
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Figure 5. Boundary areas for study of US offshore locations 
 
As mentioned earlier, the layout designs were optimizations over gridded layouts. To define a given grid, 

we adopted the terminology of Figure 6, with those terms defining a given grid. Bearing angle sets the 

rotation of the grid relative to the north-south alignment of the columns, whereas row shift offsets the 

turbines from row to row. Bearing and cross-bearing offset translate the grid along the axis set by the 

bearing angle. In this work, we assume a fixed interturbine distance (minimum distance and cross-bearing 

distance in the figure) of 1 nm as an externally provided constraint.  



 

16 
   

 

 
Figure 6. Definition of terms that define a given grid layout. Figure adapted from the original 
version courtesy of David Kyle and Jared Kassebaum of EDF Renewables 
 
 In conducting layout optimizations, we assumed several possible grid configurations that further 

specify how wind turbines can be laid out within the boundary area. “NorthSouth” grids assume the 

columns of the grid must be north-south aligned (bearing angle is 0). In this optimization, the only terms 

to optimize over are the bearing offset and cross-bearing offset. Note that the number of turbines is not 

fixed in advance. In the “Bearing” optimization, we include bearing angle in the set of variables to 

optimize over. “Bearing+Shift” adds row shift to the set of variables to optimize over. The 

“BoundaryGrid” layout uses the same grid parameterization as “Bearing+Shift” but allows wind turbines 

to be placed on the wind farm boundary separate from the internal grid structure as long as the minimum 

interturbine distance is maintained. Finally, “HexPacked” places turbines using a hexagonal pattern, 

which yields the densest possible layout while maintaining 1 nm between all turbines. These optimization 

types are illustrated in Figure 7. 
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Figure 7. The optimization layout methods considered. In each case, the AEP-optimal layout for 
Vineyard is shown. 
 
The wind turbine model used in the optimizations was a hypothetical 20-megawatt (MW) turbine based 

on the specifications provided in Sartori et al. (2018). The turbine has a rotor diameter of 252 m and a hub 

height of 165 m.  

Finally, to test the stability of the optimization results for a number of model components, we ran a 

central setting as well as several alternative settings. For the wake model chosen within FLORIS, the 

central model was the CC model described earlier, and the alternative models were the GCH model and 

the TurbOPark model (OrstedRD 2022). The wind rose for each site was provided by the WRF analysis 

described in the central case and obtained from ERA-5 in the alternative. The interturbine spacing was 

fixed at 1 nm in the central case and shortened to 0.8 nm in the alternative. The turbine was the 20-MW 

model in the central case, and the International Energy Agency (IEA) 15-MW reference wind turbine in 

the alternative (Bortolotti et al. 2019). Finally, the TI was the 6% value found to fit the data best in the 

SCADA analysis, whereas the alternative TI was a lower 3% value. These central and alternative settings 

are summarized in Table 1. 
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Table 1. Parameters for Central and Alternative Optimizations 

 
  
The results of the layout optimizations, with respect to AEP, wake losses, and number of turbines, for the 

central parameters are shown for each site in Figure 8. For all the alternative settings, the Task 3 report 

has more detail, but, in every case, only the absolute levels of the results change; the relative pattern is 

consistent across all parameterizations. In each pane, the wake losses, AEP (normalized to the NorthSouth 

case), and number of wind turbines are indicated. The results show that as the layout optimization 

becomes progressively less constrained, the layouts yield increasingly higher levels of AEP, which is the 

optimization objective. However, this is primarily achieved by accommodating higher numbers of 

turbines into the fixed boundary area; in many cases, the wake losses can actually increase with the 

increase in AEP. We infer from these results that layout optimization, when AEP is the objective, can first 

be seen as maximizing the number of turbines allowed in the area under a given set of constraints, and 

second as minimizing wake losses. Note that while somewhat more complex, this tendency to maximize 

number of turbines first and wake losses second is observed in locations with directionally concentrated 

wind roses (Humboldt and Hawaii).  

 
Figure 8. Layout optimization results for each site and optimization case for the central 

parameterization for Vineyard (left), Humboldt (middle), and Hawaii (right). 
 
3.2 Wind Farm Control Optimization 
The results of the layout optimizations could then be used as inputs to wind farm control optimization. 

For each site and optimized layout (and for each parameterization of the central and alternative parameter 

settings), an optimization can be performed over turbine yaw control strategies to determine a wind farm 

Parameter Central Setting Alternative Settings
Wake Model CC GCH, TurbOPark

Spacing 1 nautical mile 0.8 nautical miles

Wind Resource Provider WRF (Task 1) Era-5 / Merra-2

Turbine Model X_20MW IEA 15 MW

Turbulence Intensity 6% 3%
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controller. Then, for each case, we can compare the AEP of the baseline case (without yaw control) to the 

AEP produced with wind farm control and calculate a percent gain in AEP. The results for all cases are 

shown in Figure 9. 

 
Figure 9. Gain from wake steering for every case versus initial wake losses. The trend is linear; 
however, compared to SOWFA simulations, we observed that GCH tended to slightly overpredict 
gains, whereas CC tended to underpredict. Therefore, an approach of fitting to both resulted in a 
useful compromise. 
 
Figure 9 presents the gain in AEP from yaw control for every case against the wake losses in the baseline 

case. The results show that the gain in AEP from yaw control correlates well to underlying wake losses. 

As described earlier, in comparison with large-eddy simulation results, the GCH model had some 

tendency to overpredict gains for large arrays, whereas the CC model tended to underpredict (the models 

are similar for small numbers of turbines). Therefore, for the purpose of this project, we determined a 

reasonable approach to be a best-fit line to this full set of data points, all parameterizations, for both the 

CC and GCH models, effectively splitting the difference. Note that TurbOPark is not included in this 

fitting, as its wake-steering component was not calibrated in FLORIS in the earlier work. The linear fit 

yields an equation to estimate wake-steering uplift given wake losses: 

Percent gain from yaw control = (wake losses × 0.35) – 0.4 
 
Using this equation allows us to calculate the expected gains from wake steering in each of the central 

cases. Calculating this uplift for each layout optimization in the central parameter set gives the results 

shown in Figure 10. 
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Figure 10. Gains from wake steering (in steady state) for each location and layout optimization. 
Initial wake losses are indicated in each case. 
 

3.2.1  Considerations on Wind Farm Control Results 
 
It is important to point out that these gains from AEP are steady-state results. Achievable gains are limited 

in practice by dynamic considerations, in which perfectly tracking an offset is not possible. Kanev (2020) 

proposes that a well-designed wake-steering controller might yield up to 80% of the underlying static 

benefits as expressed in this report. Other potential sources of reduction in gain from the steady-state 

result would be limitations on when wake steering can be applied, and limitations of total offset amounts, 

driven by turbine load considerations (e.g., because of limits on yawing or partial waking). Another 

important caveat is that these results do not consider that these farms have been modeled without 

including neighboring wind farms, which can further impact results.  

3.3 Discussion of Optimization Results 
 
The results of both layout optimization and wind farm control optimizations for each site and layout type 

are provided in Table 2. 
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Table 2. Final Results of Optimization Analysis 

 
 
The results of this section lead to some key points. In the case where the target of optimization is AEP 

and the constraints are limited to interturbine spacing and lease area boundary, we find that layout 

optimization will effectively produce a layout that maximizes the number of wind turbines and, within the 

set of maximum number turbine layouts, minimizes wake losses. Because layout optimization as defined 

in this work only minimizes wake losses as a secondary consideration, it can leave ample room for wind 

farm control strategies to provide a valuable increase in AEP by reducing the remaining wake losses. A 

surprising outcome of this is that the Humboldt site, with highly directionally concentrated winds, is 

consistently the highest-value location for wake steering because, again, the layout optimization trades off 

not reducing wake losses in favor of increasing the number of wind turbines. 

Much of this result is a consequence of optimizing for AEP and not LCOE, which would have applied a 

counterweight to the tendency to add more turbines by including the cost to those turbines. However, the 

AEP objective was selected with the project advisory board as being consistent with expected practices, 

wherein given limited lease areas, developers will try to maximize the energy production capacity. Recent 

events that occurred after this analysis was conducted seem to support this assumption. For example, 

Buljan (2022) includes announcements by the following winning bidders in the California offshore wind 

energy auction (which includes the Humboldt area): 

“Equinor, RWE, Ocean Winds, and CIP have announced immediately after being revealed as provisional 

winners that their lease areas have the potential to host around 2 GW (Equinor), 2 GW (Ocean Winds), 

1.6 GW (RWE), and over 1 GW (Copenhagen Infrastructure Partners) of installed capacity. Shortly after 
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this, Invenergy also said via social media that its lease area has an installation capacity of 1.5+ GW. This 

is well beyond the originally estimated lease area capacities and almost double the expected total capacity 

of 4.5 GW, which now climbed to at least 8.1 GW” (Buljan 2022). 

This near-doubling of expected total capacity is consistent with a layout optimized toward maximum AEP 

given a constrained boundary area. In general, the results from this project indicate that wake steering can 

be a valuable asset in U.S. offshore wind energy production in the event that constrained layouts and the 

need to maximize total capacity yield wind farms not optimized to minimize wake losses, since the value 

of wake steering is shown to increase as wake losses increase. 

Since the computational burden of simulating very large arrays with wake control is beyond current 

resources, it is worth noting that most of the developed wind farms will likely contain several hundred 

wind turbines where deep array wake losses will be experienced away from the wind farm edges. As 

shown above, accurately modeling wake steering for large arrays is a subject of active research. This 

might meaningfully impact the results of wake steering in a different way than for the wind farms of 

around 50 wind turbines studied here, which typically have around four “rows” or “columns” for wakes to 

develop and merge laterally and downwind. Furthermore, lease areas like Vineyard will not experience 

freestream winds from all directions but will be subject to both near wakes from turbines in adjoining 

lease areas and potentially far wakes from wind farms not adjoining but within distances of up to 90 km. 

These impacts require further study. 
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4. LCOE and Revenue Analysis 
In the final project phase, the LCOE for each of the layout optimizations in Table 2 were derived with and 

without the effect of wind farm control on AEP. The results are shown in Figure 11. 

 

 
Figure 11. LCOE for each site and layout optimization with and without wind farm control, 
normalized to the NorthSouth baseline (not wake steering) case. 
 
The methods used in computing the LCOE are fully detailed in the Task 4 report. For each location, we 

derived a proposed cable layout manually, and then the LCOE could be derived using NREL’s Offshore 

Renewables Balance-of-System and Installation Tool (ORBIT) (Nunemaker et al. 2020). Operations and 

maintenance costs were assumed to be in line with the median survey response from Wiser et al. (2021). 

With respect to LCOE, the layout optimizations are not ordered in the same way as AEP; however, this is 

expected given the costs of additional wind turbines. Note that the AEP uplift from wake steering 

produces a linear reduction in LCOE.  

4.1 Revenue Analysis 
In a journal article that is currently under review, we explored the expected impact of wind farm control 

on wind farm revenue, in addition to the usually calculated AEP, for land-based wind energy farms across 

the continental United States. The results showed the impact on revenue in every case exceeded those of 

AEP impact, in large part because the electricity prices in below-rated wind speeds (where wake steering 

can be applied) exceeded those in  above-rated wind speeds (where wake steering can have no impact 

because wake losses go to zero at these speeds). 

A small study was added to this project to assess possible impacts to revenue for offshore wind farms 

from wind farm control. The results of this study are shown in Figure 12. 
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Figure 12. (Left) Distribution of extra energy production from wake steering binned by wind speed 
for Vineyard. (Middle) Three hypothetical simple relationships between mean wind speed and 
energy prices. (Right) Combining the AEP results and hypothetical price curves shows how as the 
price curve steepens (such that higher wind speeds are associated with lower energy prices), the 
amount by which revenue gains exceed AEP gains increases. 
 
In Figure 12, increases in energy production for one of the Vineyard layouts is shown, binned by wind 

speed. Note that all gains come from wind speeds just above the rated wind speed of the turbines (11.4 

m/s) and below. In the middle plot, we show three simplistic linear relationships between wind speeds 

and electricity market prices that could develop as the amount of offshore wind farms in an area increases. 

The energy results and theoretical price curves are then used to compute estimated gains in energy and 

revenue. These are shown in the right subplot. The revenue gain exceeds the AEP gain as the slope of the 

hypothetical prices becomes increasingly steep. This relationship is another way in which wind farm 

control could potentially add value to U.S. offshore wind farms, by increasing energy production during 

times of higher electricity value. 
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5. Conclusions 
This report reviewed the results and main conclusions of the project “Wind Farm Control and Layout 

Optimization for U.S. Offshore Wind Farms.” A key finding is that wake steering should be considered a 

valuable tool for increasing the energy production of wind farms, especially in the event the farms are 

designed to maximize the energy production of a given boundary area. As the U.S. offshore wind energy 

industry grows, the value of wake steering with respect to wind farm revenue is expected to exceed that of 

AEP alone. 
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