

Organization	Areas of Expertise	Description	Key test facilities
Binghamton University Binghamton, NY	Power System StabilityContact: Ziang Zhang, Eva N.Wu,ziang.zhang@binghamton.eduevawu@binghamton.eduPower System State EstimationContact: Ning Zhou,ningzhou@binghamton.eduPower Electronics ConvertersContact: Pritam Das,pdas@binghamton.edu	Binghamton University has four faculty with power systems and power electronics background. With collaboration with local utilities (NYSEG/AVANGRID and New York Power Authority), the team has research projects on renewable energy integration, power systems stability analysis, power systems stage estimation, and power electronics converter design. Research and implementation projects are supported by NSF, NYSERDA, and local industries.	 High-performance data center for power system simulation One OPAL-RT OP5600 system for hardware- in-the-loop simulation Fully equipment power electronics lab
Brookhaven National Lab (BNL) Upton, NY	Electric Grid Contact: James Misewich, <u>misewich@bnl.gov</u> Energy Storage Contact: Esther Takeuchi, <u>etakeuchi@bnl.gov</u> Energy Materials Contact: John Hill, <u>hill@bnl.gov</u>	Brookhaven is working together with New York State providing tangible solutions to help lower costs and assure reliable power delivery to consumers. Brookhaven scientists are conducting basic electrochemical research to significantly improve the efficiency and reliability of fuel cells and batteries. They have launched a concerted effort of basic and applied research for the development of improved energy-storage materials and systems with high energy densities, fast cycling rates and long cycling lifetimes in efficient, economical and safe media. Characterization facilities at NSLS-II & CFN provide an understanding of the structural and functional properties of energy materials, under operating conditions to help us design better battery materials.	 National Synchrotron Light Source-II (NSLS- II) Center for Functional Nanomaterials (CFN) Long Island Solar Farm

Case Western Reserve University Cleveland, Ohio	Offshore Wind Foundation: Research, design, testing, and performance monitoring Contact: Prof. Xiangwu (David) Zeng xxz16@case.edu	The Research Group of Prof. Zeng in the Department of Civil Engineering at Case Western Reserve University has been conducting research on offshore wind foundation in the past ten years. They have one patent and published more than 30 papers on the static, dynamics, and earthquake response of a wide range of types of offshore wind foundations. They do geotechnical tests to determine soil properties for foundation design. They can do 1g tests, small scale centrifuge tests, engineering calculations and numerical simulations.	 Geotechnical centrifuge Geotechnical lab testing facilities Large scale structure testing facility Numerical simulation software
City College of New York <i>Experimental</i> <i>Fluid Mechanics</i> <i>and</i> <i>Aerodynamics</i> <i>Laboratory</i> New York, NY	Laboratory Simulations & Field Evaluations of Wind Turbines Contact: Yiannis Andreopoulos andre@ccny.cuny.edu Designed Special Attachment to Wind Tunnel for Wind-Sea Waves Interactions with Offshore Turbines Contact: Yiannis Andreopoulos andre@ccny.cuny.edu Atmospheric Wind Measurements with LIDAR Contact: Marl Arend marend@ccny.cuny.edu	Niche capability to study wind/wave interactions with offshore turbines or farms in wind tunnel Capability to measure atmospheric boundary layer characteristics	 4ft x 4ft x 28ft Wind tunnel modified to investigate wind/wave interactions with turbines Related instrumentation to measure time- dependent velocities, forces and moments Rooftop weather stations including Lidar

Cornell University	High-fidelity modeling, wind	Cornell University has a reputation for excellence in	 Long-range scanning and
Ithaca, NY	resources and extremes, array-	research and will bring years of experience in wind energy	vertical pointing lidars
	array interactions	research to creating a better understanding of the science	 Meteorological instrumentation
	Contact: Prof S.C. Pryor	of offshore wind energy in the US. We have a broad range	including sonic anemometers,
	sp2279@cornell.edu	of instruments and years of experience in experiment	ceilometer
		design and deployment in on- and off-shore wind energy	• Disdrometers, microrain radar
	Offshore wind resources, wind	for quantifying wind resources and wind turbine wakes. We	for hydrometer measurements
	turbine wakes, offshore	also have expertise in measurements and modeling	• WRF experience and capability
	measurements	relevant to quantifying wakes and their extent from	with Fitch and EWP wake
	Contact: Prof R.J. Barthelmie	individual wind turbines to multiple arrays, both on- and	parameterizations
	rb737@cornell.edu	offshore. Our modeling capabilities include the Weather	 Microscale wake/wind farm
		Research and Forecasting model (with Fitch and Explicit	model experience and capability
		Wake parameterization) and microscale modeling of large	e.g WAsP, Fuga, Pywake
		arrays. For characterization of extreme events in an	• COAWST (WRF with waves
		offshore wind energy context we use COAWST (WRF with	and oceans)
		waves and oceans). Our research includes quantifying the	• Experience with blade leading
		impact of climate change. We work also in quantifying the	edge erosion models e.g. kinetic
		drivers of leading-edge erosion both via modeling and	energy, springer,impact
		measurements.	 Leading Edge erosion
			classification via machine
			learning

	Metocean modeling	ERM is a global company with a wide range of expertise in	
(Environmental	Contact: Tayebeh Tajalilbakhsh	developing methodologies, procedures, and approaches	
Resource	Tayebeh.Tajallibakhsh@erm.com	applicable to offshore wind projects. The company's	
Management) Inc.	, Tajallibakhsh@gmail.com	expertise includes feasibility assessment, wind resource	
		and metocean assessment, turbine design, and	
	Additional areas of expertise:	stakeholder engagement. Dr Tayebeh TajalliBakhsh leads	
	feasibility assessment, wind	the metocean modeling efforts in ERM and has been the PI	
	resource and metocean	on a few BOEM projects assessing the geohazards	
	assessment, turbine design,	impacting floating offshore windfarms and assessing the	
	and stakeholder engagement	impacts of offshore wind developments on hydrodynamic	
		circulation and ocean condition. Tayebeh has also worked	
		with offshore wind developers to assess the ambient and	
		extreme metocean conditions needed for the design of the	
		offshore turbine, the cables, and the impact of sea level	
		rise on the cable landing site; and has been involved in the	
		AWEA standards development groups.	

Johns Hopkins	Wind Farm Fluid Mechanics,	Johns Hopkins has long-standing expertise in high-fidelity	• LESGO, an open source LES
University	Turbulence and Large Eddy	Large Eddy Simulation (LES) studies of wind farms. LES	code for wind energy
Baltimore,	Simulations	results have been used to develop reduced models for	applications, available publicly on
Maryland	Contact: Charles Meneveau	wind farm design and optimization. Reduced models	Github. Both actuator disk and
	meneveau@jhu.edu	derived from LES insights have also led to novel control	actuator line wind turbine models
		methodologies.	available.
	Wind Farm Modeling and	Computational aerodynamics, sharp interface immersed	 Vicar3D, a viscous Cartesian
	Control, along with	boundary methods to model wind energy harvesting using	grid solver using immersed
	Optimization for Grid	flag motion and piezo-electric transducers.	boundaries, can be applied to
	•	In addition to wind farm control to perform grid services	simulate complex flow conditions
	Electricity Market Design	Johns Hopkins has expertise in using other renewable	such as off- shore structures and
	Contact: Dennice Gayme	resources for freq. control in low inertia grids, voltage	interactions.
	<u>gayme@jhu.edu</u>	collapse prevention, and co- optimization of fast and slow	
		resources in multi-timescale markets.	
	Aerodynamics, wind turbine	Johns Hopkins has a history of modeling integration of	
	modeling, piezo-electric wind	renewable resources into the grid as well as market and	
	energy harvesting.	policy design that can aid in planning this integration.	
	Contact: Rajat Mittal	JHU also extensive experience in using optimization and	
	<u>mittal@jhu.edu</u>	economics to simulate markets, evaluate plans, and	
		optimize dispatch, with staff providing advice to several US	
	Systems Optimization of Wind	ISOs.	
	Farm Electricity Generation	Johns Hopkins also has expertise in collapse modeling of	
	and Grid Integration	wind turbine towers and with the improving the methods	
	Contact: Sauleh Siddiqui	engineers employ to optimize their tower designs.	
	<u>siddiqui@jhu.edu</u>		

Johns Hopkins University Baltimore, Maryland <i>(Continued)</i>	Frequency Control, Low Inertia Systems, Electricity Markets, DER Coordination Contact: Enrique Mallada mallada@jhu.edu Power markets, planning, and operations simulation Contact: Ben Hobbs <u>bhobbs@jhu.edu</u> Tower Structural Modeling, Tower Manufacturing and Design Contact: Ben Schafer <u>schafer@jhu.edu</u>		
Massachusetts Institute of Technology, Cambridge MA	Wind turbine, wake, and wind farm modeling, optimization, and control, aerodynamics, atmospheric flow modeling Contact: Michael Howland <u>mhowland@mit.edu</u>	of wind turbines and wind farms that guide wind power siting, design, and control. MIT also has expertise in	 Open-source large eddy simulation (LES) code PadeOps (pseudo-spectral, high-order) available on GitHub MIT rotor, wake, and wind farm models available on Github with gradient-based optimization using automatic differentiation Calibrate-emulate-sample (CES) for computationally efficient uncertainty quantification

Pacific Northwest	Wind Resource	Pacific Northwest National Laboratory (PNNL) leverages	- PNNL-Sequim: marine reaearch
National	Characterization	multidisciplinary teams with diverse backgrounds to tackle	facility that can support the
Laboratory,	Environmental Monitoring	the most complex challenges facing offshore wind	design and testing of sensors
Richland, WA	and	development in the United States. Our unique expertise in	and instrument packages,
	 Wind-wildlife Impacts 	wind resource characterization, environmental monitoring	building integrated observing
	 Community Values and 	and wind-wildlife impacts, community values and ocean co-	platforms, and developing
	Ocean Co-use	use, grid integration and transmission, and wind data	advanced methods for data
	 Grid Integration and 	management is enabling the innovations needed to	collection and analysis in a
	Transmission	accelerate offshore wind development by addressing	variety of marine and coastal
	Wind Data Management	offshore wind energy market and deployment barriers.	environments.
			- DOE lidar buoys: using
	Contact: Alicia Mahon	In addition, the PNNL-Sequim campus, in Sequim,	atmospheric and oceanographic
	<u>alicia.mahon@pnnl.gov</u>	Washington, houses the only marine research facilities in	measurement capabilities, the
		the Department of Energy complex. The campus is	lidar buoys capture data, such as
		uniquely positioned for marine-based research which	wind speed and direction at
		provides our researchers unique capabilities and expertise	multiple heights using wind
		in how to plan, design, install, monitor, and maintain energy	profiling lidar, air and sea surface
		infrastructure and technology in harsh, extreme, and	temperatures, ocean current
		remote marine environments.	speeds and directions, and wave
			heights and directions.
			- Aquatic Research Laboratory:
			monitor and predict the impacts
			of renewable energy
			development and operation on
			water resources
			- Atmospheric Measurements
			Laboratory: understanding
			atmospheric processes through
			measurements, including

Rutgers, The	Environmental Research,	The vast expertise and broad effort across Rutgers fully	Center for Ocean Observing
State Univeristy	monitoring, and stakeholder	encompasses the expansive scope of offshore wind.	Leadership (RUCOOL)
New Jersey,	engagement.	Existing Rutgers faculty, staff and students are working on	Center for Advanced
Brunswick New	Contact: Dr. Josh Kohut	the environmental, engineering, policy, planning, and	Infrastructure and Transportation
Jersey	kohut@marine.rutgers.edu	workforce development that must all be considered to	(CAIT)
		implement an innovative research and workforce	Laboratory for Energy Smart
	Energy economics, policy, and	development program relevant to the developing US	Systems and the
	system analysis	offshore wind activity. Ongoing work at Rutgers is	John J. Heldrich Center for
	Contact: Dr.Frank Felder	organized across 3 research themes: 1) Environmental	Workforce Development
	ffelder@ejb.rutgers.edu	resource assessment and stewardship; 2) Energy	 Labor Education Action
		economics, policy, and system analysis; 3) Materials	Research Network (LEARN)
	Materials Engineering,	Engineering, Manufacturing, and Infrastructure	Center for Energy, Economic
	Manufacturing, and	Engineering. Additionally, 2 cross cutting elements	and Environmental Policy
	Infrastructure Engineering.	integrate across the participating Rutgers units: 1)	
	Contact: Dr. Dunbar Birnie	Stakeholder Engagement and compatibility; 2) Education	
	dunbar.birnie@rutgers.edu	and workforce development. These efforts span the	
		Rutgers units listed below and include environmental	
	Workforce development,	observations and models, electricity market analysis of	
	supply chain and sourcing.	offshore wind for the New Jersey State Offshore Wind	
	Contact: Dr. Kevin Lyons	Master Plan, materials and infrastructure engineering,	
	klyons@business.rutgers.edu	impacted stakeholder engagement, and workforce	
		development programming partnering with high school, 2	
		year, and 4 year institutions throughout the state.	

Sandia National	Rotor design and aeroelasticity	Sandia has been researching wind turbine rotor systems	Scaled Wind Farm
Laboratories	research	with programs studying vertical-axis wind turbines (VAWT)	Technology Facility
Albuquerque, NM	Contact: Brandon Ennis	and evolving to horizontal-axis wind turbine designs.	
and Lubbock, TX	blennis@sandia.gov	Sandia has conducted research on the rotor system	
		spanning composite materials and structural optimization to	
		active and passive aerodynamic load control designs.	
		Specific capabilities include:	
		Recent experience in scaled design with the National	
		Rotor Testbed design project – a highly instrumented blade	
		design to validate design models	
		Numerical Manufacturing and Design (NuMAD) blade	
		structural optimization tool and design tool to assess	
		aeroelastic performance	
		• Extensive experience in composite materials research,	
		including reliability and damage detection, and material	
		optimization for rotor designs	
		 Assessment of aerodynamic improvements and 	
		degradation (e.g., erosion)	
	High Fidelity Modeling:	Sandia has built on decades of investment in high-	
	Verification, validation and	performance computing hardware and software	
	uncertainty quantification	development to tailor computational fluid dynamics codes	
	Contact: David Maniaci	for the wind plant application. This is further supported by	
	dcmania@sandia.gov	an array of codes used to perform uncertainty	
		quantification and multi-fidelity analysis tailored to the	
		specific problem. Sandia capabilities include:	
		Nalu – an open source computational fluid dynamics	
		code scalable to petascale computing platforms	
		(continued on next page)	

Sandia National Laboratories		 A Verification and Validation framework to systematically 	
Albuquerque, NM		assess and improve the predictive capability of the	
and Lubbock, TX		computational code	
(Continued)		DAKOTA code for optimization and uncertainty	
		quantification	
	Extreme load detection and	For the past 10 years Sandia has been developing rotor	
	structural health monitoring	sensing technologies to monitor blade loading and damage.	
	Contact: Joshua Paquette	Acceleration and strain-based force and deflection	
	japaque@sandia.gov	estimation methods have been developed for normal and	
		extreme operations of modern wind turbines. Damage	
		detection methods have been developed that can be used	
		in wind turbine controllers to control damage growth rate.	
		This work has involved:	
		Instrumenting over 25 field-operating wind turbine	
		blades at various scales and locations with	
		accelerometers, fiber optic strain gages, pitot tubes,	
		pressure taps, hot-film sensors, and other sensors	
		throughout the turbine	
		 Performance assessment and wake impact 	
		· · · ·	
		quantification via SCADA data	

Stevens Institute	(1) Hydrodynamics and	Stevens Institute of Technology has several faculty	1) Davidson Lab towing / wave
of Technology,	control: Fixed and Floating	members with background in ocean, naval and coastal	tank: A facility with unique
Hoboken, NJ	offshore platforms,	engineering. They have established relations with NJEDA	capabilities for testing marine and
	Contacts: Muhammad Hajj	and companies involved in development of offshore wind	naval systems.
	(mhajj@stevens.edu), Raju Datla	along the NJ/ NY shores. Stevens has	
	(rdatla@stevens.edu)		2) The New York Harbor
	(2) Marine Mammal Detection,		Observing and Prediction
	Contact: Alexandar Sutin		System (NYHOPS) provides
	(asutin@stevens.edu)		maritime forecasts for an area
	(3) Scouring and Coastal		centered on the New York
	Resiliency,		Harbor rangi
	Contact: Jon Miller		
	(jmiller@stevens.edu)		

Stony Brook	High fidelity computational	Stony Brook University faculty in the College of	 VFS-Wind, an open source
University	fluid dynamics for offshore	Engineering and Applied Sciences (CEAS) and the School	LES code for offshore wind
Stony Brook, NY	wind farm control co-design	of Marine and Atmospheric Science (SOMAS) have	energy applications, available
	and optimization	extensive experience and expertise in a very wide range of	publicly on Github. Coupled
	Fotis Sotiropoulos	issues relevant to offshore wind.	atmospheric turbulence, ocean
	fotis.sotiropoulos@stonybrook.ed	Our researchers have developed cutting edge	waves and turbine dynamics with
	<u>u</u>	computational tools for high-resolution atmospheric	advanced controls and novel
	Ali Khosronejad	modeling and wind resource assessment and large-eddy	actuator surface models for
	ali.khosronejad@stonybrook.edu	simulation (LES) of wind farms, including modeling of	control co- design of large
		atmospheric turbulence, ocean waves, FSI of floating	offshore wind farms
	High resolution atmospheric	structures, advanced control strategies and reduced order	 Weather Research and
	modeling for offshore wind	models.	Forecasting (WRF) model and
	resource assessment and	Expertise also includes laboratory scale modeling of	the DART (Data Assimilation
	prediction using field data and	floating turbines and mooring lines, remote sensing	Research Testbed) used to
	data assimilation approaches	meteorology, wind and wave data collection in real-life	simulate a wide range of weather
	Brian Colle	marine environments, fatigue behavior of mooring lines,	regimes.
	brian.colle@stonybrook.edu	and survey and modeling of pelagic marine resources,	 Coastal and Hydraulics
		biology, and eco-systems.	Engineering Research Lab
	Active and passive remote	We also have expertise in high resolution modeling of	(CHERL) equipped with state-of-
	sensing, boundary layer	power systems to simulate the impact of high penetration	the-art wave, surge and current
	meteorology, multi-scale wind	of offshore wind to the power grid, cost, emissions, etc.,	modeling facilities (see
	and turbulence measurements,	and investigate environmental, economic and employment	http://www.stonybroo
	observing networks design	impacts of offshore wind projects.	<u>k.edu/cherl/);</u>
	and optimization		
	Pavlos Kollias		
	pavlos.kollias@stonybrook.edu		

Stony Brook	Physical Modeling; Ocean and	Radar Science group
University	Coastal Morphodynamics	(you.stonybrook.edu/r adar) a
Stony Brook, NY	Modeling; Lake and Ocean	remote sensing group with
(Continued)	Hydrokinetic Renewable	experience in measurements in
	Energy	urban and coastal areas.
	Ali Farhadzadeh	 Instrumentation includes fixed
	ali.farhadzadeh@stonybrook.edu	and mobile observatories with
		radar/lidar measurement
	Energy Storage	capabilities, drones and surface
	Contact: Esther Takeuchi	flux systems.
	esther.takeuchi@stonybrook.edu	A wide array of forward
		simulators for coupling
	Fatigue behavior of materials	measurements and high
	in mooring systems;	resolution LES models.
	developing materials with	 Experimental facility to
	enhanced resistance to fatigue	characterize the fatigue behavior
	failure; developing synthetic	of mooring materials;
	high strength composite	Computational modeling capability
	materials.	to characterize fatigue damage
	T. A. Venkatesh	evolution and growth in advanced
	t.venkatesh@stonybrook.edu	materials
		A variety of emerging field and
	Benthic ecology, population	lab
	and community structure in	
	space and time.	
	Robert Cerrato	
	robert.cerrato@stonybrook.edu	

Stony Brook	Surveys and predictive	techniques (e.g., fine- scale
University	modeling of marine mammal	acoustic telemetry, stable
Stony Brook, NY	and seabird abundance and	isotopes), modelling (e.g., state-
(Continued)	distribution, drone-based	space), and multivariate
	assessments of marine	statistical analyses (e.g., spatial-
	mammal body condition Dr.	temporal direct analyses) for
	Lesley Thorne	marine ecosystem monitoring.
	Lesley.thorne@stonybrook.edu	Predictive models of marine
		mammal abundance, forecasts of
	Quantifying and monitoring	marine mammal abundance and
	pelagic marine resources:	distribution in proximity to wind
	zooplankton, fish, and marine	farms
	mammals.	 Drone-based estimates of
	Joseph Warren	baleen whale body condition
	joe.warren@stonybrook.edu	reflecting changes to marine
		habitats and forage fish
	Multidisciplinary research in	• R/V Seawolf, an 80 foot ocean
	environmental assessment and	going vessel equipped for bottom
	toxicology.	trawling, ACDP, side scan sonar,
	Anne McElroy	berths for 11. Deck and scientific
	anne.mcelroy@stonybrook.edu	crew have extensive experience
		sampling in areas of OSW
	Energy system modeling,	development.
	energy economics, energy and	
	environment	
	Gang He	
	Gang.He@stonybrook.edu	

Texas A&M	Hydrodynamics	TAMU has several faculty focusing on structural and	Offshore Technology
Univeristy	Mirjam Furth, furth@tamu.edu	fracture mechanics as well as the hydrodynamics, motion	Research Center, The wave
College Station,	Jeffrey Falzarano,	responses and performance of offshore wind farms. There	basin is 150 ft long and 100 ft
ТХ	jfalzarano@civil.tamu.edu	is one faculty member with geotechnical and foundation	wide, with a depth of 19 ft.
		focus.	 Wind-wave-current flume: 28 m
	Structural and fracture		long, 0.8 m wide, and 1.0 m
	mechanics		height.
	David Allen, dhallen@tamu.edu		 15-m mobile-bed wave flume
	Marcelo Paredes,		 Fleet of research vessels for
	lparedes@exchange.tamu.edu		field measurement campaigns in
	Roger Cordes,		Gulf of Mexico.
	rcordes@exchange.tamu.edu		MTS servo-hydraulic loading
			frame for quasi-static and
	Geotechnical and foundations		dynamic testing conditions which
	Charles Aubeny,		includes low and high cycle
	caubeny@civil.tamu.edu		fatigues and fracture toughness
			evaluation.
			Environmental chamber for low
			and high-temperature
			applications ranging from -160 C to 350 C.
			Digital Image Correlation
			(D.I.C.) system for static and
			dynamic loading regimes to
			record in real-time full
			displacement and strain fields
			under 2D and 3D settings.

Texas Tech	Complex Flow Measurements using	Texas Tech University (TTU) has performed a number of	TTUKa mobile research
University	Radar	studies and field campaigns related to the structure of	radars
Lubbock, TX	Contact: John Schroeder	offshore wind and its interaction with wind turbines and/or	 DOE-X prototype radar
	john.schroeder@ttu.edu	plants. Whether measurements were acquired using	 Instrumented field site (low
		advanced radar systems developed and installed by TTU,	roughness/minimal terrain) for full
	Power Performance and Wind	or provided by a third party (i.e. collected by an	and research scale testing,
	Loading Studies	instrumented tower, floating lidar or other technology), TTU	includes a 200 m instrumented
	Contact: Delong Zuo	maintains expertise to effectively evaluate the	tower, sodar, vertically pointing
	delong.zuo@ttu.edu	measurements, and provide context on the flow structure	and scanning lidar, radar, the
		and its impact on wind turbine performance and loading.	Scaled Wind Farm Technology
	Hurricane Boundary Layer		Facility, and other
	Contact: John Schroeder		measurement assets
	john.schroeder@ttu.edu		
	Instrument Development/Signal		
	Processing		
	Contact: Jerry Guynes		
	jerry.guynes@ttu.edu		

University of	Array performance, control and	UD has been bringing an interdisciplinary approach to	2 MW Gamesa G90 Wind
Delaware (UD)	layout optimization, numerical		Turbine in Lewes, Delaware,
Center for	weather prediction and	wind since 2003. UD's team reflects decades of hands-on	http://www.ceoe.
Research in Wind	simulation, and resource	experience with the offshore wind industry in the US and	udel.edu/lewestur
(CReW), Center	assessment	Europe. UD offers a graduate certificate in wind power	bine/index.shtml
for Composite	Contact: Cristina Archer,	science, engineering and policy, runs a skills academy for	• 915-mHz Wind Profiler,
Materials (CCM),	<u>carcher@udel.edu</u>	professionals, and brings a team in mechanical and	http://www.ceoe. udel.edu/our-
and Robotics	_	electrical engineering, materials science, marine geology,	people/profiles/ca rcher/fsmw
Discovery	Geotechnics & site	meteorology, physical ocean science and engineering,	Research Vessels,
Laboratories	characterization Contact: John	oceanography, marine policy, business, economics, risk	https://www.ceoe
(RDL)	Madsen, <u>jmadsen@udel.edu</u>	management, and wildlife ecology. Under research grants	.udel.edu/schools-
Newark and		or cooperative agreements UD faculty and researchers	departments/scho ol-of-marine-
Lewes, Delaware	Ports, deployment, and	have or are investigating and publishing on wakes, wind	<u>science-and-policy/marine-</u>
	installation	plant layout optimization, deployment and installation	operations
	Contact: Willett Kempton,	techniques, numerical modeling of wind resources,	 Robotics Discovery
	<u>willett@udel.edu</u>	airborne wind, grid integration, gearbox tribology,	Laboratories (RDL),
		geotechnical aspects of and robotics and remote sensing	http://www.ceoe.
	Composite materials. Contact:	for site characterization (foundations, UXO, fish and	udel.edu/schools-
	John Gillespie, <u>gillespi@udel.edu</u>	endangered species), cost reduction via understanding of	departments/scho
		public perceptions and tourism impacts, risk analysis,	ol-of-marine-
	Tribology	policy and removal of regulatory barriers, marine spatial	science-and-policy/robotics
	Contact: David Burris	planning for conflict avoidance, public engagement	Materials Tribology Lab,
	<u>dlburris@udel.edu</u>	strategies, and bird and bat assessment.	http://research.m_
			e.udel.edu/~dlbur ris/
	Under-water and in-air UAVs		
	for monitoring and recording		
	met- ocean conditions		
	Contact: Matt Oliver,		
	moliver@udel.edu and Art		
	Trembanis		
	art@udel.edu		

University of	Flow-structure interaction	The University of Illinois has a unique combination of	 Combination of national- level
Illinois at Urbana-	Contact: Leonardo P. Chamorro,	strengths in areas directly applicable to offshore wind	wind-tunnels, flumes and large-
Champaign	lpchamo@illinois.edu, Arne	energy. These include wind energy systems, modeling	scale refractive-index- matching
Urbana, IL	Pearlstein, ajp@illinois.edu	and simulation of wind turbines, dynamics and control of	(RIM) facilities
		mechanical and electromechanical systems, fluid	 State-of-the-art instrumentation
	Turbulence, aerodynamics and	mechanics, structures and materials, control- configured	very suitable for the study of
	hydrodynamics	design of offshore wind turbines, failure and reliability	novel strategies for OWTs.
	Contact: Leonardo P. Chamorro,	analysis, development of control theory and numerical	Supporting instrumentation
	lpchamo@illinois.edu	algorithms for the existing and the novel offshore wind-	includes time-resolved, 3D
		based power generators and wind farms.	particle image velocimetry and
	Experimental methods		3D particle tracking velocimetry,
	Contact: Leonardo P. Chamorro,	most efficient, reliable, compact wind energy conversion	hotwire anemometry system with
	lpchamo@illinois.edu	system. Instead of following the traditional approach of	automatic 3D traversing, 6-
		building the electrical generator separately from the power	degree-of- freedom load cells,
	Control systems	electronics converter and then connecting both to convert	and telemetry.
	Contact: Joseph Bentsman,	the turbine's mechanical power into electrical power, the	 Computer clusters dedicated to
	jbentsma@illinois.edu	team applies control co-design methodologies on the	HPC, and data management.
		generator and converter to substantially reduce the size	 200 kW drivetrain testbed with
	Power systems	and weight of the system.	state-of-the-art measurement
	Contact: Joseph Bentsman,		facilities, Fully developed Power
	jbentsma@illinois.edu		Electronics and Electric
			Machines Laboratory
	Mathematical modeling and		
	real- time computation		
	Contact: Joseph Bentsman,		
	jbentsma@illinois.edu		

University of	Structures and materials	
Illinois at Urbana-	Contact: Iwona Jasiuk,	
Champaign	ijasiuk@illinois.edu	
Urbana, IL		
(Continued)	Reduced-order modeling	
	Contact: Arne Pearlstein,	
	<u>ajp@illinois.edu</u>	
	Power Takeoff, Electric	
	Machines Power Electronics,	
	and Drives Control	
	Contact: Arijit Banerjee	
	arijit@illinois.edu	

University of	Marine environmental and	The University of Massachusetts Dartmouth is the only	SMAST-East Seawater
Massachusetts	fisheries science.	four-year doctoral research university in Southeastern	Laboratory Facility provides
Dartmouth	Contact: Steven Lohrenz	Massachusetts and is home to the largest marine science	highly flexible and configurable
		-	
Dartmouth, MA	(primary) <u>slohrenz@umassd.edu</u>	research and academic program in the University of	capabilities for seawater testing
	Ocean physical and	Massachusetts system. The School for Marine Science	for a variety of applications in a
	environmental modeling.	and Technology (SMAST) has the technology and	controlled setting.
	Contacts: Geoff Cowles	expertise to analyze the impact of offshore wind	The SMAST Acoustic/Optic
	gcowles@umassd.edu	installations on the ocean environment, including critical	Test Tank is a unique facility built
	Marine renewable energy.	marine habitats. In addition, SMAST has world class	to support the development and
	Contact: Dan MacDonald	expertise in the science of climate change as it relates to	testing of sensitive acoustic and
	dmacdonald@umassd.edu	the fisheries, ocean temperature and acidification, storm	optical underwater measurement
		surge, sea level rise and coastal erosion.	concepts and devices.
		SMAST and UMass Dartmouth also have extensive	R/V Lucky Lady - 52-foot-
		computational infrastructure to support state-of-the-art	long, diesel-powered, coastal
		modeling of ocean dynamics and environmental	research
		processes.	vessel with enclosed cabin,
		Additionally, researchers in SMAST and the College of	hydro-wire mounted on a side
		Engineering are working on various aspects of marine	davit and operated by a hydraulic
		renewable energy, including the design, modeling, and	winch for sampling and deploying
		testing of MRE devices, primarily for small scale	research equipment, and large
		applications, materials engineering, underwater sensing	work area aft of the pilothouse
		and robotics, hydrokinetics, and geotechnics.	structure
University of	Short-term Wind Forecasting,	University of Pittsburgh provides large-eddy simulation	Linux cluster with parallel file
Pittsburgh	Wind Farm Modeling. Contact:	capabilities for off-shore and on-shore wind farms with	storage for accelerated GPU
	Inanc Senocak,	turbine wake modeling. Computations are performed	computing.
	senocak@pitt.edu	entirely on multiple graphics processing units (GPU) for	
	Schocak@pitt.edu	fast turnaround time. Micro-scale simulations can be	
		informed by weather prediction models through model-	
		chain coupling.	

University of	Modeling of ocean waves,	High-fidelity simulation of ocean wave field, marine wind,	CFD code "WOW! SAFL!" for
Minnesota	wind and offshore wind	and fixed and floating wind turbines; Deterministic	wind-ocean- wave-turbine
Twin Cities, MN	turbines Contact: Lian Shen	prediction of nonlinear wave field evolution; Reduced-order	simulation
	<u>shen@umn.edu</u>	modeling of wind/wave/wind-turbine/wind-farm system	 Eolos Wind Energy Field
		In situ measurements of turbine wake flow and structural	Station: fully- instrumented 2.5
	Field measurement of wind	deformation using novel imaging; Data mining approach for	MW wind turbine and 130 m
	turbine	wind field data analysis	meteorological tower
	Contact: Jiarong Hong	Laboratory experiments for the scaling of high Reynolds	St. Anthony Falls Laboratory
	jhong@umn.edu Michele Guala	number wall turbulence, organization of large scale	Atmospheric Wind Tunnel
	mhuala@umn.edu	motions, and their contribution to turbine performance and	Control algorithms developed
		wake evolution	in-house
	Laboratory measurement of	We have designed, simulated, implemented, and	
	turbulent boundary layer and	experimentally tested individual blade pitch control for a	
	wind turbine models Contact:	2.5MW turbine. We have also designed several other	
	Michele Guala mhuala@umn.edu	advanced control algorithms for individual turbines and	
		wind farms.	
	Wind turbine and wind farm		
	control		
	Contact: Peter Seiler		
	seile017@umn.edu		

University of	Offshore wind technology	The University of Rhode Island is a leader in coastal and	URI has several monitoring
Rhode Island	Contact: Prof. M Reza Hashemi	ocean planning because of their expertise in	projects at the first offshore wind
Kingston, RI	reza hashemi@uri.edu	oceanography, sociology, sustainable fisheries, coastal	farm in the US, Block Island Wind
		resource management, and ocean engineering. URI	Farm, including structural,
	Environmental Impacts of	researchers have contributed to siting, construction,	environmental, and social
	offshore wind energy: Contact:	monitoring, and implementation of the first offshore	aspects.
	Prof. John King	windfarm in the US, Block Island Wind Farm, through	URI is forming a consortium in
	jwking@uri.edu	OceanSAMP https://seagrant.gso.uri.edu/oceansamp/	offshore renewable energy
		Important areas of expertise:	
	Public acceptance and policy	Macro- and Micro-siting	
	of offshore wind energy	Underwater acoustics (construction and operation	
	Contacts: Prof. David Bidwell	noise, marine mammals monitoring)	
	dbidwell@uri.edu	• Environmental impacts of offshore wind farms (e.g.,	
		marine mammals, fish, birds, and other specifies/habitats)	
		Social acceptance of offshore wind projects	
		Outreach and public engagement	

	-		-
University of	Rotor and turbine design;	The following are UT-Dallas capabilities and areas of	BLAST Wind Tunnel
Texas at Dallas	Structural Dynamics; offshore	expertise relevant to offshore wind:	UTD Mobile LiDAR Station
Richardson,	wind systems	Large turbine design, new turbine concepts, offshore wind	Energy High-Bay for Large
Texas	Contact: Dr. D. Todd Griffith	systems, structural health and prognostics management,	Structural Evaluation
	(RDAG Institutional	and experimental structural measurements.	HPC cluster
	Representative)	Control systems for load reduction and wind plant/turbine	
	tgriffith@utdallas.edu	power performance improvement, high-fidelity CFD tools	
	Wind turbine control systems;	for modeling wind turbine performance and wake impacts	
	wind plant control systems;	in wind farms.	
	condition monitoring systems	Boundary layer wind tunnel for testing sub-scale rotors &	
	Contact: Dr. Mario Rotea	wind turbine airfoil aerodynamics.	
	rotea@utdallas.edu	Wind tunnel testing of floating platforms with Hardware-In-	
	Wind turbine and wind plant	the- Loop (HIL) control. Deployable LiDARs to evaluate	
	modeling: Actuator line and	wind resources, wind farm performance and wake	
	disk, LES.	interactions.	
	Contact: Dr. Stefano Leonardi		
	Stefano.Leonardi@utdallas.edu		
	Wind tunnel testing, LiDAR		
	measurements, Wind plant		
	modeling and design Contact:		
	Dr. G. Valerio lungo		
	Valerio.lungo@utdallas.edu		
Liniversity of Litab	Numerical Simulations Contact:	At the Wind Energy and Turbulence Laboratory, at the	Center for High- Performance
Salt Lake City,	Marc Calaf marc.calaf@utah.edu	Mechanical Engineering Department (University of Utah),	Computing
Utah	mare cald <u>mare.cald.cald.codd</u>	we specialize in the development of computational tools	
		(high & low resolution) to model the complex flow in	
		onshore/offshore wind farms.	

Webb Institute	Naval Architecture Contact:	The Webb curriculum includes Naval Architecture, Marine	•	Towing tank/wave basin
Glen Cove, NY	Rick Royce <u>rroyce@webb.edu</u>	Engineering and Marine Systems. Each of these focus		Wave-maker
	Marine Engineering Contact:	areas are integral to the development and support of		Circulating water channel
	Matt Werner <u>mwerner@webb.edu</u>	offshore wind energy systems.		Wind tunnel
	Computational Fluid Dynamics			Material and structural testing
	Contact: Adrian Onas	Physical modeling of the environment including waves,		Marine engineering laboratory
	aonas@webb.edu	currents, and wind in our various laboratories.		Marine engineering laberatory
		Modeling of marine systems both through simulation and		
		physical models.		
		Beach access to Long Island Sound.		
			1	
			1	
			1	
			1	
			1	

West Virginia Universirty, Morgantown, WV	OSW related subject matter expert: Dr. Onur Avci (Department of Civil and Environmental Engineering). onur.avci@mail.wvu.edu	 Vibration based damage detection and SHM. Vision-based damage detection and SHM. Sound-based damage detection and SHM. Machine Learning, Deep Learning, AI use in SHM and damage detection applications. Generative models in SHM and damage detection applications. Use of drones for SHM and damage detection applications (LiDAR, high-speed camera, infrared). Vibrations serviceability of structural systems. 	
---	---	---	--

	-		
Wind Energy	Array Performance and Control	The Wind Energy Center at UMass Amherst has extensive	 Open throat wind tunnel
Center University	Flow-Induced Vibrations	experience in wind energy in general and offshore wind	Re-circulating water tunnel
of Massachusetts	and Fatigue	energy in particular, dating back to the 1970s and	
Amherst,	Stability of Off-Shore Wind	continuing up to the present. Recent activity includes:	
Massachusetts	Turbine Platforms	 10 faculty members across 5 departments 	
	Stability of Wind Turbine	• In excess of \$10 million in research funding since 2008:	
	Blades	NSF, BOEM, GE, DoE, US Fish and Wildlife, MassCEC	
	Ultrasonic mitigation of bat-	• Multidisciplinary research and education: Engineering,	
	wind turbine interactions	ecology, public policy, planning	
	Contact: Yahya Modarres-	 UMass Wind Energy NSF IGERT: 32 PhD fellows ~1/2 	
	Sadeghi:	female	
	modarres@engin.umass.edu	 Wind Energy Engineering certificate program 	
	Optimization Offshore wind	• Fundamentals of wind energy engineering online course	
	turbine control	Founding member of North American Academy of Wind	
	Dynamics of floating turbines	Energy, Massachusetts Research Partnership for	
	in wind farm arrays	Offshore Wind and POWER-US	
	 Loads analysis of turbines 	Research capabilities and Personnel	
	within wind farm arrays	1. Turbine design and analysis:	
	Contact: Matt Lackner	Wake modeling and control	
	lackner@ecs.umass.edu	 Floating platform dynamics: damping and controls 	
		Active, semi-active and passive controls for blades and	
		structures	
		2. Support structures and foundations:	
		 Soil-structure interaction: monopile reliability and 	
		damping	
		(Continued on next page)	

Wind Energy	Cost-Reducing Turbine	• Extreme loads and risk analysis: hurricane wind and	
Center University	Support Structures for the US	wave loads	
of Massachusetts	Market	 Novel mooring systems: multiline anchors design and 	
Amherst,	 Offshore structural 	reliability	
Massachusetts	engineering design	3. Environmental and ecological modeling and assessment	
(Continued)	Design for deconstruction and	4. Public policy, acceptance and social impacts	
	relifing	5. Economics	
	 Offshore structural load 	6. Personnel: Sanjay Arwade, Erin Baker, Alison Bates,	
	estimation	Don DeGroot, Matthew Lackner, James Manwell, Yahya	
	 Soil-structure interaction and 	Modarres- Sadeghi, Krish Thiagarajan Sharman	
	foundation design		
	 Resiliency to extreme 		
	wind/wave loads such as caused		
	by hurricanes		
	Sanjay Arwade		
	<u>arwade@umass.edu</u> Donald		
	Degroot: <u>degroot@umass.edu</u>		

Wind Energy	Floating Structure Mooring
-	Concepts for Shallow and
of Massachusetts	Deep waters
Amherst,	Semi-submersible and spar
Massachusetts	buoy dynamics
(Continued)	 Shared anchor concepts
	 Parameter studies showing
	depth viability for catenary and
l	other mooring type
	Contact: Krish Thiagarajan
	Sharman
	kthiagarajan@umass.edu
	Hurricanes and Winter Storms:
	Hurricane Probabilistic Risk
	Assessment
	Fixed and floating structures
	Extreme wave experiments
	Extreme wind experiments
	Contact: Sanjay Arwade
	arwade@umass.edu

Wind Energy	Offshore wind turbine design	
	standards	
-	Offshore energy storage	
Amherst,	North American Academy of	
Massachusetts	Wind Energy	
(Continued)	Wind Energy Education	
	Contact: James Manwell	
	manwell@ecs.umass.edu	
	Fluid-Structure Interactions	
	 Flow-Induced Vibrations and 	
	Fatigue	
	 Stability of Off-Shore Wind 	
	Turbine Platforms	
	Stability of Wind Turbine Blades	
	Ultrasonic mitigation of bat-wind	
	turbine interactions	
	Contact: Yahya Modarres-	
	Sadeghi:	
	modarres@engin.umass.edu	

Woods Hole	In situ and remote sensing,	The Woods Hole Oceanographic Institution (WHOI) is the	The Air-Sea Interaction tower
Oceanographic	sensor development and	world's largest non-profit ocean-themed research	(cabled offshore fixed tower in 17-
Institution	testing, coastal ocean and	5 I	m water depth)
Woods Hole, MA	atmospheric processes,	that are critical to the emerging offshore wind energy	The Martha's Vineyard
	turbulence	industry in the U.S., including metocean sensing, advanced	
	Contact: Anthony Kirincich (lead	atmospheric sensing and numerical modeling, ocean and	Nantucket Test Site
	member)	underwater acoustic sensing, sub-bottom remote sensing,	 The Center for Marine
	akirincich@whoi.edu	and AUV development and operation. WHOI owns and	Robotics
	Marine meteorology and air-	maintains the Air Sea Interaction Tower (ASIT), a	 Pressure test facility and
	sea interaction	component of the Martha's Vineyard Coastal Observatory,	sensor test tanks
	Contact: Jim Edson	and numerous dockside test facilities for general scientific	 Port facilities
	jedson@whoi.edu	use. WHOI also maintains a fleet of research vessels,	 R/V Tioga coastal research
	High resolution sub-bottom	including the coastal research vessel, R/V Tioga.	vessel
	remote sensing		 R/Vs Armstrong and Atlantis
	Contact: Dan Lizarralde		 U.S. Navy approved AUV test
	danl@whoi.edu		areas.
	Marine Mammal behavior,		
	passive acoustic sensing,		
	sensor development		
	Contact: Mark Baumgartner		
	mbaumgartner@whoi.edu		
	Marine Robotics Contact: Jim		
	Bellingham jbellingham@whoi.edu		
Xodus Group	Floating Offshore Wind	Xodus Group is a global energy consultancy and an	
Boston, MA	Economic Impact Analysis,	established industry expert within the offshore wind sector,	
	LCoE/Costing Analysis, Supply	having performed project work on all related elements such	
	Chain and Workforce Analysis,	as analyzing, developing, and making recommendations	
	Technology and Innovation	for the development of key supply chain and workforce	
	Analysis	initiatives.	
1	<u> </u>		